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1 Introduction

New bandwidth-consuming usages and the increase in the number of users induce an expo-
nential growth of mobile traffic [4]. Facing this traffic growth, telecommunication companies
are hence pushed to expand their network through important investments (several billion e
to improve the mobile network in the last six years, see [6]). This network design problem has
two specific features. First, a fast roll-out between mobile networks generation and a highly
competitive environment that encourage operators to invest in the newest technology available.
Second, telecommunication companies are often both infrastructure operators, planning their
network expansion, and service providers, designing the offers proposed to the subscribers.

Through marketing investments, the operator is able to control the demand on its different
technologies and avoid over-dimensioning, hence reducing its investments in network design.
Reversely, the efficiency of such investments over a given year is also dependent on the network
deployment performed in the previous years: subscribers will be more reluctant to shift towards
the newest technology if no investments on it have been performed. This trade-off between
network and subscribers dynamic can be financially more interesting than a separate optimiza-
tion of the two problems. Moreover, an operator fixes strategical guidelines on its network for
remaining competitive. Some of these indicators (for example, throughput) depend on both
network and subscriber performances. Investments in subscribers and networks should hence
be jointly optimized over the whole time-horizon of a strategical planning, which is typically 5
years for a telecommunication operator.

This enlightens that subscriber and network dynamics are intertwined. However, to the best
of our knowledge, these dynamics have been until now studied separately. To represent the
subscriber dynamic, we consider in this work discrete subsidies that represent different possible
marketing savings on a new phone required to access the new service. In order to model how
the subscribers react to such subsidies, we choose in this article to use the well-studied Bass
model (see [1] for the original paper, [5] for a model with the notion of generations, and [2]
for applications to telecommunication context). Adapting this model for our context (see the
extended version of the article [3] for more details), we assume that subscribers react according
to both the subsidy amount proposed and an indicator of the network deployment.

Our contribution is two-fold. First, we provide a modeling of the subscribers’ behavior and
incorporate it in a linear Mixed-Integer Programming (MIP) formulation. Second, we im-
prove the performance of the model through (i) the strengthening of the MIP with several
families of valid inequalities, and (ii) a heuristic algorithm that assigns fixed values of the deci-



sion variables (subsidies and coverage) and solves the resulting problem as a knapsack problem.

The remainder of this article is organized as follows. Section 2 introduces our Mobile Master
Plan problem (MMP) for two technologies, for which a mixed-integer formulation is provided
and linearized. Section 3 introduces the aforementioned valid inequalities and heuristic algo-
rithm. Numerical experiments assess these methods in Section 4. Concluding remarks are
given in Section 5.

2 Mathematical model and formulations
In this work, we focus on a framework in which the operator has two network technologies,
the current one CG and the newest one NG (g ∈ G) that the operator aims to deploy. The
MMP problem for these two technologies consists in finding the subsidies decisions (amount
of subsidy given at each period) and networks decisions (installing NG technology and adding
modules for both technologies) for each site (denoted by s ∈ S), while satisfying load-balancing
and capacity constraint at each time-period (t ∈ T ), and strategical guidelines at the end of
the time horizon. The amount of subsidy is denoted by σ ∈ K and the coverage range by c ∈ C.
The reaction of the subscribers is assumed to depend on these two parameters. Parameters
and variables used are stored respectively in Table 1 and 2.

Parameters:
CANG cost of adding NG technology on each site
CMg cost of adding a module of a technology g ∈ G on each site
M0
s,g initial number of modules of technology g ∈ G on site s ∈ S

Mg technical upper bound on the number of modules of technology g ∈ G
Z0
s,NG initial presence (yes/no) of NG technology on site s ∈ S

U0
s,o initial number of subscribers on site s ∈ S to technology o ∈ G

Dt
g unitary demand of a subscriber served by technology g ∈ G at time period t ∈ T

CAPg capacity of adding a module of a technology g ∈ G
fσ,c reaction to the subsidy offered σ ∈ K under range of coverage interval c ∈ C
Lc the lower bound of coverage range c ∈ C
Uc the upper bound of coverage range c ∈ C
U
t
s,o an upper bound on the total number of subscribers to technology o ∈ G on site s ∈ S

at the end of time period t ∈ T
α0 the sites coverage at the beginning of the time horizon
α threshold for the coverage (strategic guideline)
QoE threshold for the quality of service (strategic guideline)

TAB. 1: Model parameters



Variables:
zts,NG binary variable indicating if NG technology is deployed on site s ∈ S

at time-period t ∈ T ∪ {0}
mt
s,g the total number of modules of technology g ∈ G deployed on site s ∈ S

at the end of time period t ∈ T ∪ {0}
uts,o the total number of subscribers to technology o ∈ G on site s ∈ S

at the end of time period t ∈ T ∪ {0}
uts,o,g the total number of subscribers to technology o ∈ G on site s ∈ S

served by technology g ∈ G at the end of time period t ∈ T ∪ {0}
αt redundant variable that denotes the NG sites coverage

(fraction of sites where NG technology is deployed) at the end of the time period t ∈ T ,

which is equal to

∑
s∈S

zt
s,NG

NS

δtσ,c binary variable indicating if αt belongs to range c ∈ C
and subsidy offered at time period t ∈ T is σ ∈ K

TAB. 2: Model variables

Consequently, the MMP problem can be modeled as follows:

min
∑
σ∈K

∑
c∈C

∑
s∈S

σfσ,cδ
t
σ,cu

t−1
s,CG +

∑
s∈S

∑
g∈G

CMg(mt̄
s,g −M0

s,g)

+
∑
s∈S

CANG(z t̄s,NG − Z0
s,NG) (1)

s.t. mt
s,CG ≤MCG ∀ s ∈ S, ∀ t ∈ T , (2)

mt
s,NG ≤MNGz

t
s,NG ∀ s ∈ S, ∀ t ∈ T , (3)

mt−1
s,g ≤ mt

s,g ∀ s ∈ S, ∀ t ∈ T , ∀ g ∈ G, (4)
uts,NG = uts,NG,CG + uts,NG,NG ∀ s ∈ S ∀ t ∈ T , (5)

uts,NG,CG ≤ U
t
s,NG(1− zts,NG) ∀ s ∈ S, ∀ t ∈ T , (6)

Dt
CG(uts,CG + uts,NG,CG) ≤ CAPCGm

t
s,CG ∀ s ∈ S, ∀ t ∈ T , ∀ g ∈ G, (7)

Dt
NGu

t
s,NG,NG ≤ CAPNGm

t
s,NG ∀ s ∈ S, ∀ t ∈ T , ∀ g ∈ G, (8)

uts,CG = ut−1
s,CG −

∑
σ∈K

∑
c∈C

fσ,c δ
t
σ,cu

t−1
s,CG ∀ s ∈ S, ∀ t ∈ T , (9)

uts,NG = ut−1
s,NG +

∑
σ∈K

∑
c∈C

fσ,cδ
t
σ,cu

t−1
s,CG ∀ s ∈ S, ∀ t ∈ T , (10)

∑
s∈S

ut̄s,NG,NG ≥ QoE(
∑
s∈S

U0
s,NG + U0

s,CG), (11)

αt̄ ≥ α, (12)∑
σ∈K

∑
c∈C

δtσ,c = 1 ∀ t ∈ T , (13)
∑
σ∈K

δtσ,c ≤ 1 + Uc − αt−1 ∀ t ∈ T , ∀ c ∈ C, (14)
∑
σ∈K

δtσ,c ≤ 1 + αt−1 − Lc ∀ t ∈ T , ∀ c ∈ C, (15)

u0
s,o = U0

s,o ∀ s ∈ S, ∀ o ∈ G, (16)
m0
s,g = M0

s,g ∀ s ∈ S, ∀ g ∈ G, (17)
z0
s,NG = Z0

s,NG ∀ s ∈ S, (18)
αtNS =

∑
s∈S

zts,NG ∀ t ∈ T ∪ {0}, (19)



mt
s,g ∈ Z ∀ s ∈ S, ∀ t ∈ T ∪ {0}, ∀ g ∈ G, (20)

mt
s,g ∈ Z ∀ s ∈ S, ∀ t ∈ T ∪ {0}, ∀ g ∈ G, (21)

zts,NG ∈ {0, 1} ∀ s ∈ S, ∀ t ∈ T ∪ {0}, (22)
uts,o ≥ 0 ∀ s ∈ S, ∀ t ∈ T ∪ {0}, ∀ o ∈ G, (23)
uts,o,g ≥ 0 ∀ s ∈ S, ∀ t ∈ T , ∀ o, g ∈ G2, (24)
δtσ,c ∈ {0, 1} ∀ t ∈ T , ∀ σ ∈ K, ∀ c ∈ C. (25)

We denote this formulation by M. The objective function (1) minimizes both subscribers
migration costs and network investments. The first term stands for the offered subsidies (user
upgrades), the second term for adding new modules for increasing the capacity (densification),
and the third term for the deployment of the newest technology NG (coverage extension).

Constraints (2)–(4) refer to the network dynamic. Constraints (2)–(3) define the upper
bounds on the numbers of modules for each technology deployed on each site. These constraints
also ensure that if a technology is not deployed, no corresponding modules can be added.
Constraints (4) impose the number of modules of each technology to be non-decreasing during
the time horizon.

Constraints (5)–(8) are the network dimensioning constraints, in charge of making the link
between the network dynamic and the subscriber dynamic. Constraints (5) and (6) ensure
the load-balancing rule. Constraints (7) and (8) are the capacity constraints: the installed
capacities of each technology on each site have to be sufficient for providing services for all
users located at this site and having to be served by this technology. They also ensure the
technical incompatibility stating that CG subscribers cannot be served by NG technology.

Constraints (9)–(10) are the subscriber dynamic constraints. They define the total number
of subscribers to CG and NG technologies at each site and each time period, taking into
account former CG subscribers who decide to shift to NG technology, thanks to subsidies and
coverage improvements.

Constraints (11)–(12) stand for the model strategic guidelines and refer to the end of the
time horizon. Constraint (11) ensures the threshold of subscribers covered by the newest
technology is met. The indicator is proportional to the quality of experience which measures
the percentage of users having access to the new technology throughput. Constraint (12)
imposes that the threshold on the number of sites on which NG is deployed is met.

Constraints (13) ensure that one and only one subsidy from the set K is offered at each
time period, the case when no subsidy is given being represented by σ = 0. Constraints (14)
and (15) ensure that, for each time period, variables δtσ,c are set according to the coverage.
Constraints (14) (resp. (15)) set all δ related to a range to 0 if the coverage is greater (resp.
smaller) than the upper (resp. lower) bound of the range.

Constraints (16)– (18) refer to the initial conditions and constraints (19)–(25) define the
domain of all variables in the formulation.

To linearize this formulation, we introduce variables πtσ,c,s = δtσ,cu
t−1
s,CG, ∀ t ∈ T , ∀ s ∈

S, ∀ σ ∈ K, ∀ c ∈ C and use the classical linearization of the product of a binary variable by
a continous one.

3 Strengthening of the formulation and upper bound

We designed several families of valid inequalities in order to improve our formulation.

Proposition 1 The following sets of inequalities are valid for formulationM:

zts,NG ≤ zt+1
s,NG ∀ t ∈ T , ∀ s ∈ S, (26)∑

σ∈K

∑
c′<c

δt
′

σ,c′ ≤ 1−
∑
σ∈K

∑
c′≥c

δtσ,c′ ∀ t, t′ ∈ T 2, ∀ c ∈ C, ∀ s ∈ S, (27)



dNSLce
∑
σ∈K

δtσ,c ≤
∑
s∈S

zts,NG ∀ t ∈ T , ∀ c ∈ C, (28)⌈
Dt
NGU

t
s,NG

CAPNG

⌉
zts,NG ≤ mt

s,NG ∀ t ∈ T , ∀ s ∈ S, (29)

mt
s,NG ≤ max(M0

s,NG,

D
t
NGU

t
s,NG

CAPNG

)zts,NG ∀ t ∈ T , ∀ s ∈ S, (30)

∑
σ∈K

∑
c∈C

πtσ,c,s = ut−1
s,CG ∀ t ∈ T , ∀ s ∈ S. (31)

Remark 1 Constraints (26)–(28) refer to the fact the coverage is increasing. Constraints (29)
and (30) are based on upper and lower bounds of the number of subscribers. Constraints (31)
are the direct application of RLT technique (multiplication of constraints (13) by variable ut−1

s,CG,
for each period t ∈ T and each site s ∈ S), significantly reinforcing the linearization (see [7]).
Details are given in [3].

We also propose a heuristic approach for the MMP problem, tackling the main difficulties
of formulationM which come from the non-linearity of the user dynamic. Consequently, our
heuristic fixes σt (the amount of the subsidy offered to CG subscribers) and ct (the coverage
range) to specific values σ̃t ∈ C and c̃t ∈ K, for each period t ∈ T , and solve the resulting
problem optimally. Let us now denote the problem where σt = σ̃t and ct = c̃t as the MMP(σ̃, c̃).
Our heuristic is described by Algorithm 1.
Algorithm 1: Heuristic algorithm
INPUT : W ⊂ (K × C)t̄ ;
for (σ̃, c̃) ∈ W do cost(σ̃, c̃)← optimal solution cost of MMP (σ̃, c̃);
return min

(σ̃,c̃)∈W
cost(σ̃, c̃)

We denote by C the highest range of coverage. For tractability reasons we assume that

c̃ = (cinit, C, . . . , C) for each (σ̃, c̃) ∈ W . (32)

Assumption (32) implies that all network investments are performed in the first time period,
enabling us to remove index t on variables m and z (see[3] for the details). This assumption
and the knowledge of the subsidies decisions enable us to considerably simplify the solution
of MMP(σ̃, c̃) as summarized next. Number of subscribers U t

s,CG and U t
s,NG are now fixed

constants. We reformulate capacity and load-balancing constraints as a set of constraints
depending only on variables ms,g and zs,NG. We conclude that we can use these constraints to
compute a closed form for the optimal value taken by variables ms,g depending on the values
taken by variables zs,NG, which enable us to remove variables m. We know and introduce
indeed for each site s ∈ S the number of modules installed at the end of the time horizon:

• for CG technology:

– if NG is already installed (Z0
s,NG = 1): m̃AI

s,CG = max
(⌈

max
i∈T

Di
CGU

i
s,CG

CAPCG

⌉
,M0

s,CG

)
(only CG subscribers are served by CG technology),

– if NG is not installed over the time horizon (zs,NG = 0):
m̃NI
s,CG = max

(⌈
Dt̄

CGU
T OT
s

CAPCG

⌉
,M0

s,CG

)
(all subscribers are served by CG technology),

• for NG technology when it is installed (zs,NG = 1):

m̃s,NG = max
(⌈

Dt̄
NGU

t̄
s,NG

CAPNG

⌉
,M0

s,NG

)
.



Note that if, on a site s ∈ S, m̃AI
s,CG > MCG then z t̄s,NG = 1 and if m̃s,NG > MNG then

z t̄s,NG = 0. If both happen, the instance of MMP (σ̃t, c̃t) is infeasible.
We define by SCG ⊂ S the subset of the sites where NG is not installed at the beginning

of the time horizon. We also remove from set SCG the sites for which we already know if we
will install NG technology or not due to infeasibilities. Note that we only have to solve the
problem on sites of set SCG. All modules costs for sites of set S \ SCG are labeled as constant
netcost. Constant Ninst labels the number of sites where we know NG is installed at the
end of the time horizon. For each site s ∈ SCG, C1s = CANG + m̃s,NGCMNG denotes the
cost implied by deciding to install NG technology and C2s =

(
m̃NI
s,CG − m̃AI

s,CG

)
CMCG the

cost implied by deciding the opposite. Therefore, the MMP(σ̃, c̃) can be reformulated as the
following bidimensional knapsack problem:

min
∑

s∈SCG

C1sz t̄s,NG + C2s(1− z t̄s,NG) + upgradecost+ netcost (33)

s.t.
∑

s∈SCG

U t̄
s,NGz

t̄
s,NG ≥ QoE

∑
s∈S

UTOT
s −

∑
s∈S\SCG

U t̄
s,NG, (34)

∑
s∈SCG

z t̄s,NG ≥ max(α,LCNS)−Ninst, (35)

z t̄s,NG ∈ {0, 1} ∀s ∈ SCG. (36)

Proposition 2 The MMP(σ̃, c̃) can be solved in O(NS+ |SCG|2(CANG+MNGCMNG)) when
c̃t = C, ∀ t ∈ {2, . . . , t̄}.

Proof: This result comes from the fact that the problem becomes a knapsack problem which
can be solved by a dynamic programming algorithm. �

4 Numerical experiments
The purpose of this section is two-fold:

1. Assessing the scalability of formulationM and the relevance of the valid inequalities on
real-life instances.

2. Assessing the performance of the heuristic from Section 3, and in particular the quality
of the best solution found when the heuristic solution is used as MIPstart.

TAB. 3: Final gaps for 12 instances (4 sizes, 3 densities) tested with each family of valid inequalities
Instance Final gap

NS density M + (26) + (27) + (31) + (28) + (29) + (30) + (26)-(30)
50 R 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S 5.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 R 10.62 4.52 3.13 3.59 6.33 1.90 6.46 1.14
S 14.92 4.81 3.17 2.55 3.60 3.67 4.37 2.50
U 7.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

150 R 16.71 9.65 5.62 4.43 7.91 6.87 6.87 4.12
S 20.72 10.49 4.34 3.91 4.13 10.45 7.71 3.47
U 7.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 R 16.73 10.53 7.99 3.59 10.55 8.84 9.80 2.48
S 18.85 10.06 12.22 2.77 11.03 13.59 12.28 3.06
U 7.73 1.83 1.01 0.49 1.96 1.86 2.27 0.07

Both tests are performed on the real-life instances which are detailed in [3].



First, for assessing the valid inequalities, we extract from 50 to 200 sites of the real life
instances, on which we test different scenarios. Instances features are displayed in Table 3,
column “NS” standing for the number of sites and column “density” standing for the density
scenario (rural R, suburban S or urban U). The final gap is computed with and without the
valid inequalities from Section 3. More precisely, we test formulations (M), (M + each family
of valid inequality) and (M + all families of valid inequalities). The corresponding final gap is
displayed in Table 3. The time-limit is set to 1800 seconds. The best value for the final gap is
in bold and the second best is in italic. We observe that inequalities (31) are the most efficient
ones for reducing the final gap (see Table 3), but combining with the other valid inequalities
is the best strategy. These results hence highlight the relevance of our valid inequalities.

Second, we assess the interest of the heuristic of Section 3 for finding feasible solutions on
10 real-sized instances corresponding to different French territorial divisions. Two regions:
Bretagne (divided into 4 departments: Finistère, Côtes d’Armor, Morbihan and Ile et Vilaine)
and part of Pays de la Loire (divided into 3 departments: Mayenne, Sarthe, Maine et Loire)
are hence considered. Instances features are displayed in Table 3, column “Ter. Div” refer to
the territorial division considered, column “NS” to the number of sites and column “α0” to the
initial coverage. As mentioned previously, we look for a solution where the range (“high”) is
reached over the first period and we enumerate the subsidy amount σ̃ ∈ K (ten possibilities if
we do not restrict) at each time period (five) so as to solve each resulting problem MMP(σ̃, c̃)
with the pseudo-polynomial model provided in Section 3. This means that we have to solve
105 MMP(σ̃, c̃) problems, which we cannot afford. Hence, in our heuristic, we enumerate all
σ̃ ∈ {0, 100, 150, 200, 250} and we solve the problem only if the reaction is sufficient to reach
the threshold. This gives at most 55 = 3125 MMP(σ̃, c̃) problems to solve.

In a second step, the solution found by the heuristic is used as an initial solution (MIPstart)
for the solver. The time limit given to the solver is 7200 seconds minus the time of the heuristic.
This limit has been chosen so as to be comparable with the MIP solving in 7200 seconds without
an initial solution provided.

Results are presented in Table 4. The column “heuristic” stands for the algorithm described
above, the column “MIP” for the MIP without initial solution provided and the column “MIP-
start” for the MIP with the heuristic solution provided as MIPstart. The column “gapMIP”
reports the gap between the heuristic value and the best solution found by the MIP. Column
“f-gap” refer to the final gap and “sol” to the value of the best solution found.

TAB. 4: Solution and final gap for large instances
Instance heuristic gapMIP MIP MIPstart

Ter. Div. NS α0 sol time sol f-gap sol f-gap
Finistère 210 36 13406 505 0 13406 4.91 13406 3.14

Côtes d’Armor 149 29 10420 617 0 10420 1.94 10420 1.64
Morbihan 168 38 11178 551 0 11178 3.32 11178 2.06

Ile et Vilaine 214 43 12115 776 0 12115 2.73 12115 2.32
Mayenne 73 31 4879 127 0 4879 0.92 4879 0.00
Sarthe 116 33 7729 186 0 7729 2.38 7229 0.00

Maine et Loire 145 28 9877 221 0 9877 4.06 9877 0.72
Bretagne 741 37 47106 3197 -63.41 128109 100.00 47106 3.51

Pays de la Loire 334 30 22467 4113 -0.01 22470 4.26 22464 3.01
Full instance 1075 35 69497 5997 -59.00 169968 92.80 69497 5.42

We observe that the heuristic finds very good quality solutions for all instances in two hours
of total computation time (heuristic + MIPstart). For the two largest instances, these solutions
are far better (around 60% savings) than the best solution found without heuristic by the MIP
in two hours. These solutions are not improved afterward by CPLEX but using the heuristic
as MIPstart enables us to obtain the proof of convergence for the two smallest instances and
to have all final gaps below 6%.



5 Conclusions
In this work, we introduced the problem of multi-year investment planning for a telecommu-
nication operator. Encompassing several real aspects faced by operators, our problem consists
in optimizing network and subscriber dynamics under capacity and strategic constraints. In
particular, we have modeled the fraction of subscribers adopting a new technology as depend-
ing on the coverage of that technology. In addition, the operator can provide subsidies to
encourage the subscribers to shift faster to that technology. We have provided a non-linear
MIP formulation for this problem, which we linearize and reinforce with several sets of valid
inequalities. Computational tests have been made for a real 3G/4G case-study. The efficiency
of the valid inequalities in improving the performances has been underlined, as well as the rel-
evance of the branch-and-bound procedure performed on the tightened MIP for solving scaled
real-life instances. For the largest instances, the solver struggles to find a feasible solution and
so we have proposed a heuristic to find a good-quality primal feasible solution. This heuristic is
based on fixing the upgrade parameters (subsidies amount and state of coverage) and enables
us to find very good quality solutions while running much faster than the branch-and-bound
procedure on the exact MIP.
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