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1 Introduction
The Alternating Current Optimal Power Flow (ACOPF) problem is a nonconvex optimiza-

tion problem whose purpose is to provide an operating point of the power network minimizing
generation costs. Solving this problem is essential for RTE, the French transmission system
operator, because ACOPF problems are subproblems of decision problems involving millions
of euros, e.g. operational planning and grid development. Yet there is still no efficient method
to solve ACOPF problems to global optimality.

Many convex relaxations have been proposed to evaluate the quality of feasible solutions
computed with local methods [13]. SDP relaxations often provide tight lower bounds [12] that
are useful to prove global optimality. Some promising global optimization methods are based
on these relaxations : Godard et al. propose an adaptation of the Mixed-Integer Quadratic
Convex Reformulation method to ACOPF problems in [6], Gopalakrishnan et al. present a
branch-and-bound approach using SDP relaxations in [7] and Josz et al. apply the Lasserre
hierarchy in [11] to achieve global optimality. All these methods depend on large-scale SDP
problems being solved efficiently.

Many algorithms are proposed in the literature to solve SDP problems. In this paper, we
focus on interior-point methods that are the most reliable and accurate algorithms as far as
we know. Interior-point methods solve efficiently small-to-medium-sized SDP problems but do
not scale well for large-scale problems because of the Hessian equation that implies forming
and factorizing a fully-dense matrix at each step. Yet, sparse large-scale problems can be
tackled exploiting sparsity. In this paper, we focus on clique decomposition techniques [5,
15, 20] that perform well for ACOPF problems. Jabr [9] and Molzahn et al. [14] have each
proposed a way to use clique decompositions for ACOPF problems and both propose to work
on problems formulated in complex variables. However, there are many other possible clique
decomposition procedures that provide different reformulations of a SDP problem. Most of the
clique decomposition algorithms seek to minimize the number of added edges in the chordal
extension. It results in decompositions with many small cliques for ACOPF problems and many
linking constraints are required to handle overlaps between cliques. As linking constraints can
slow down the resolution, Nakata et al. [15] and Molzahn et al. [14] propose heuristics for
merging cliques in order to reduce their number. Yet, merging cliques means adding more
edges in the chordal extension. Therefore, classical clique decomposition approaches may not
always be the most appropriate since they focus on the number of added edges, regardless of
important criteria such as the size of the largest clique or the number of linking constraints.



In this paper, we show that different clique decompositions are not equivalent in terms of
resolution by comparing different chordal extension algorithms on RTE [10] and other MAT-
POWER [22] datasets. Our main contribution is to demonstrate in two ways that computing a
chordal extension with a minimum number of added edges is not a relevant choice for ACOPF
problems. The first test consists in a comparison between reformulations coming from the SDP
problem formulated in complex variables and reformulations coming from the same problem
but formulated in real variables. The conclusions of this comparison are that less edges are
necessary in the real case but the reformulations are more performant in the complex case.
The second test relies on a new clique combination algorithm that improves a given decompo-
sition by adding more edges in the chordal extension. The edges are added in such a way as to
minimize the number of linking constraints while keeping small cliques. Computational tests
show that this algorithm significantly speeds up the resolution of the largest OPF instances.
Both tests highlight the fact that the number of added edges is not always the best criterion
to minimize, which proves that the computation of the chordal extension is a question that
deserves to be investigated.

This paper is organized as follows. Section 2 describes briefly the OPF problem and the
classical rank relaxation. Common clique decomposition techniques are presented in section
3 along with computational comparisons. Section 4 compares reformulations coming from the
complex SDP problem and reformulations coming from the real SDP problem. Section 5 details
our clique combination algorithm and resulting enhancements. Section 6 concludes the paper.

2 ACOPF problem and rank relaxation

In this section, we present briefly the ACOPF formulation and its classical semidefinite rank
relaxation.

2.1 ACOPF formulation

The ACOPF problem is defined on a power transmission network that can be modelled
as an oriented graph T (N, B) where N represents the electrical buses and B the branches
(transmission lines, transformers). Let us denote G ⊂ N the subset of generator buses. The
ACOPF problem is defined as follows :
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(ACOPF)

where Re(z) stands for the real part of the complex number z and Im(z) for the imaginary
part. All constant parameters are in bold. cg and kg represent respectively the linear cost and
the constant cost of the generator bus g ∈ G. Sload

n represents the load. vmin
n and vmax

n are
bounds on the voltage magnitude at bus n. Pmin

g and Pmax
g (respectively Qmin

g and Qmax
g ) are



bounds on the active (respectively reactive) power at generator bus g ∈ G. imax
b represents the

current limit for branch b ∈ B. The variables are the voltage vn and the power Sgen
n at each

bus n ∈ N with Sgen
n = 0 for all buses n ∈ N\G. Both are complex variables.

B−(n) is the set of entering branches at bus n and B+(n) the set of exiting branches. o(b)
stands for the origin of branch b, d(b) for the destination of branch b. The currents iorig

b (v)
and idest

b (v) of a branch b ∈ B are linear functions of vo(d) and vd(b) depending on physical
characteristics. The power on the lines are defined as follows :

Sorig
b (v) = vo(b)i

orig
b (v)

Sdest
b (v) = vd(b)i

dest
b (v)

(1)

Note that we use thermal limits modelled with current and linear generation costs to have
a formulation closer to what is used in practice at RTE.

2.2 Rank relaxation

Since costs are linear, the ACOPF problem can be written in terms of voltage variables
only. The resulting problem is a Quadratically Constrained Quadratic Program (QCQP) with
complex variables that can be expressed in a compact way :

min vHQ0v
s.t. vHQpv ≤ ap ∀p = 1..m

v ∈ Cn
(2)

The classical rank relaxation is constructed by introducing the Hermitian matrix W = vvH .
This constraint is equivalent to W � 0 and rank(W ) = 1. The rank relaxation is the SDP
problem obtained by suppressing the rank constraint :

min Q0 ·W
s.t. Qp ·W ≤ ap ∀p = 1..m

W � 0
(3)

This SDP problem with complex numbers can be converted into a SDP problem with real
numbers using the rectangular representation and a symmetric matrix of size 2n× 2n.

3 Clique decomposition analysis
In this section, we review the clique decomposition techniques based on matrix completion

introduced by Fukuda et al. in [5, 15]. Then we show that the resolution with interior-point
methods is highly sensitive to the clique decomposition.

3.1 Clique decomposition framework

The clique decomposition relies on the matrix completion theorem [20]. This allows to replace
the Positive Semidefinite (PSD) constraint on a big matrix by several PSD constraints on
smaller submatrices at the price of adding linking constraints between these submatrices.

Let us define A as the aggregate sparsity pattern of a SDP problem, i.e., the matrix of
nonzeros entries in the data matrices (objective and constraint matrices). Let us denote GA as
the graph associated to A. The matrix completion theorem can be applied if and only if GA

is chordal. A chordal graph is a graph with no induced cycle of four vertices or more. A clique
is a subset of vertices that are all connected together. A maximal clique is a clique that is not
included in another clique.

The general framework for clique decomposition contains three steps. The first step consists
in computing a chordal extension H of the aggregate sparsity pattern GA. The second step
consists in determining the list of maximal cliques in H, denoted by L = {C1, ..., Cr}. These



maximal cliques define the submatrices that must be positive semidefinite in the reformulated
SDP problem. From the list of maximal cliques L, a clique graph W can be defined with nodes
corresponding to maximal cliques and weighted edges between each pair of vertices defined by
the number of shared nodes between the two corresponding cliques. The third step consists in
computing a clique tree U by computing a maximum-weight spanning tree for W. This clique
tree allows to specify linking constraints between submatrices.

It is clear that the clique decomposition depends on the chordal extension H but it is not
completely clear how to precisely define a "good" decomposition from a practical point of
view. One reasonable choice is to use decompositions that minimize the number of additional
edges. However, finding the minimal chordal extension is NP-complete [21]. Bergman et al.
have recently proposed an exact model with exponentially many constraints to find a minimal
extension [2] but it is only usable for small instances. For this reason, several efficient heuristics
for adding few edges are available in the literature [8]. The most commonly used is based on
a Cholesky factorization of GA whose rows and columns have been permuted according to a
minimum or approximate minimum degree ordering [1]. The ordering has a significant impact
on the fill-in, that is, on the number of edges added to GA. Once H is computed, the list
of maximal cliques can be computed in linear time [19]. Finally, the most widely used exact
algorithm to compute the clique tree is Prim’s algorithm [16] but there are other algorithms and
they can lead to different optimal clique trees. However, the decompositions obtained usually
do not differ much : the number of linking constraints do not differ significantly from one tree
to another because the trees have the same overall weight.

We show in the following subsection that different chordal extension algorithms give different
decompositions and that these different decompositions are not equivalent as regards resolution
time.

3.2 Numerical comparison of two chordal extension heuristics for SDP
relaxations of ACOPF formulated in complex variables

There are several algorithms to compute chordal extensions and the clique decompositions
can vary greatly from one algorithm to another, which has an impact on the resolution. In
this subsection, we compare clique decompositions coming from two different algorithms : a
Cholesky factorization with an AMD ordering and the Minimum Degree (MD) heuristic [3] that
is based on a dynamical computation of a minimum degree ordering of the vertices. We have
picked these two algorithms because they are among the best heuristics known. Both algorithms
are applied on the SDP relaxations of ACOPF formulated in complex variables, therefore
providing maximal cliques with complex variables. In order to solve the SDP problems, these
cliques are finally converted into cliques with real variables by doubling them.

Table 1 presents some results of this comparison on MATPOWER instances with more
than 1000 buses. The tests were carried out on a Processor Intel R© CoreTM i7-6820HQ CPU
@2.70GHz using the module MathProgComplex.jl [18] with Julia 1.0.3. and the SDP solver
MOSEK 8.1.0.72 was used for the resolution. We also used the packages JuMP.jl [4], Light-
Graphs.jl [17] and MetaGraphs.jl.

Let ncMD, nlcMD and tMD be respectively the number of maximal cliques, the number of
linking constraints and MOSEK resolution time obtained with the MD heuristic. Similarly,
let ncAMD, nlcAMD and tAMD be respectively the number of maximal cliques, the number of
linking constraints and MOSEK resolution time obtained with Cholesky and AMD. Table 3.2
presents some ratios between these three quantities. All results are presented in percentages.

This table is not exhaustive but some conclusions can be drawn from it. First, clique decom-
positions are different from one algorithm to another. In particular, there are large differences in
resolution time even if the decompositions have about the same number of cliques. Theses dif-
ferences can be explained by the differences in the number of linking constraints, especially for
the biggest instances. Another factor can be the size of the biggest clique in the decomposition.
It is also possible to generate decompositions which differ both in the number of cliques and in
the number of linking constraints so differences in resolution time can be much more impressive.



Instance ncMD

ncAMD − 1 nlcMD

nlcAMD − 1 tMD

tAMD − 1

case1888rte 0.17% 1.7% 6.1%
case3012wp -0.14% -3.3% -15.1%
case6468rte 0.10% 0.31% -6.8%

case9241pegase -0.02% 4.9% 62%
case13659pegase -0.04% 4.7% 48%

TAB. 1 – Comparison of clique decompositions for MD and AMD

In particular, in preliminary tests we experienced that there exists "bad" clique decompositions
by computing several "bad" orderings for Cholesky (e.g. random ordering, maximum degree
ordering). In this case, a "bad" clique decomposition means a decomposition with many linking
constraints, which can lead to memory issues with interior-point methods. This confirms the
idea that the computation of the chordal extension is a point worth studying.

The results shown in this section are a good motivation to continue exploring the impact
of the clique reformulation on the resolution. The next section focus on the impact of compu-
ting the clique decomposition on SDP relaxations of ACOPF problems formulated in complex
variables or on SDP relaxations of ACOPF problems formulated in real variables.

4 Comparison of clique decompositions computed in the com-
plex and in the real framework

SDP relaxations of ACOPF problems are naturally expressed with complex numbers but
in practice, in order to be solved by the available solvers, they are rewritted in terms of only
real variables. The process of rewriting the model with real variables leads to a different (and
bigger) aggregate sparsity pattern A. Such a A could be itself decomposed in a way that would
not be possible with the original formulation with the complex variables. Therefore, there are
two possibilities for the clique decomposition : either applying the procedure on the complex
SDP formulation and converting the complex cliques to real cliques or directly applying the
clique decomposition procedure on the real SDP formulation. However, computing the chordal
extension on the complex or the real problem is not equivalent. We first show it theoretically
on a small MATPOWER [22] example, LMBM3.

Let us define Gc (respectively Gr) as the graph associated to the aggregate sparsity pattern
A of the complex (respectively real) SDP relaxation. For any ACOPF instance as defined in
section 2, Gc is the network graph T (N, B). Let us denote Hc (respectively Hr) the chordal
extension computed from Gc (respectively Gr) with a given algorithm. The chordal extension
Hc can be converted to real numbers in the same way as the complex graph Gc can be converted
to the real graph Gr. Let us denote Hc

real this conversion of Hc. Hc
real is also a chordal extension

of Gr. The objective of this section is to compare Hc
real and Hr.

For LMBM3, Gc is a clique of size 3, denoted by K3 and Gr is the graph with the 6 following
nodes V r = {1Re, 1Im, 2Re, 2Im, 3Re, 3Im} and the 12 following edges :

Er = {(1Re, 2Re), (1Re, 2Im), (1Im, 2Re), (1Im, 2Im),
(1Re, 3Re), (1Re, 3Im), (1Im, 3Re), (1Im, 3Im),
(2Re, 3Re), (2Re, 3Im), (2Im, 3Re), (2Im, 3Im)}.

Since Gc is complete and thus chordal, Hc = Gc = K3 regardless of the chordal extension
algorithm used. Clearly, there is one maximal clique with 3 nodes and no linking constraints.
When converted to real numbers, we get Hc

real = K6, the clique of size 6, which accounts
to adding 3 edges to Gr. This chordal extension gives one maximal clique with 6 real nodes
and no linking constraints. On the other hand, Gr is not chordal because there are several
induced subgraphs of size 4, e.g. 1Re − 2Im − 1Im − 2Re. It suffices to add the two edges



(2Re, 2Im) and (3Re, 3Im) to Gr to get a minimal chordal extension Hr 1. Hr is chordal because
1Re−1Im−2Re−2Im−3Re−3Im is a perfect elimination ordering. This chordal extension gives
two maximal cliques : {2Re, 2Im, 3Re, 3Im, 1Re} and {2Re, 2Im, 3Re, 3Im, 1Im} and 10 linking
constraints.

This small example proves that it is not equivalent to compute the clique decomposition on
the complex problem or on the real problem from the theoretical point of view : more edges are
added in the complex case to get a chordal extension. This idea is confirmed by computational
tests that show that there are on average 50% more edges added when the chordal extension
is computed in the complex case rather than in the real case for MATPOWER instances with
more than 1000 buses. However, adding less edges in the chordal extension is not necessarily
advantageous from the numerical resolution point of view. Indeed, adding less edges in the
chordal extension can mean having more cliques and more linking constraints as shown in Table
2. This table presents comparisons between clique decomposition coming from the complex case
(computed on Gc) and clique decomposition coming from the real case (computed on Gr). More
precisely, both clique decompositions are based on a chordal extension obtained by a Cholesly
factorization with an Approximate Minimum Degree (AMD) [1] ordering. Let Lc (respectively
Lr) be the list of maximal cliques obtained from the chordal extension Hc (respectively Hr).
The second column represents the ratio for the number of cliques defined as |L

r|
|Lc| − 1. Similarly,

the third column represents the ratio for the number of linking constraints, i.e., nlcr

nlcc − 1 with
nlcc (respectively nlcr) the number of linking constraints when the clique decomposition is
done for the complex (respectively real) problem. Finally, the fourth column represents the
ratio for MOSEK resolution time, i.e., tr

tc − 1 with tc (respectively tr) the resolution time with
the clique decomposition coming from the complex (respectively real) problem. All results are
presented in percentages and the tests were carried out in the same manner as in subsection
3.2.

Instance |Lr|
|Lc| − 1 nlcr

nlcc − 1 tr

tc − 1

case1888rte 51% 24% 17%
case3012wp 39% 15% 4%
case6468rte 40% 19% 58%

case9241pegase 48% 18% 28%
case13659pegase 59% 20% 23%

TAB. 2 – Comparison of clique decompositions on Gc or Gr

This table shows that the clique decomposition procedure on Gr gives approximatly 50%
more cliques and 20% more linking constraints than on Gc, which slows down the resolution
(the computing time increases by at least 4% more and up to 58% more). Therefore, even if
less edges are added to the graph Gr when working directly in real numbers, it seems better to
work in complex numbers. This comparison demonstrates that computing a chordal extension
with a minimum number of added edges is not necessarily profitable. The next section presents
a clique combination algorithm that leads to the same conclusion.

5 A new clique combination approach

Several heuristics do already exist to compute chordal extensions but to the best of our
knowledge, they all try to minimize the number of added edges. However, nothing proves that
a chordal extension with few added edges gives a decomposition easier to solve. In contrast,
minimizing the size of the biggest clique or the number of linking constraints could be more
interesting because these quantities have an impact on the resolution. To support this claim,

1. There are other possibilities for Hr, e.g., if the edges (1Re, 21m) and (3Re, 3Im) are added, but the results
will be the same.



we propose a new clique combination algorithm that allows to reduce the number of linking
constraints in a given decomposition while keeping small matrices. This algorithm consists in
merging some cliques that are adjacent in the clique tree by solving the problem (IP) below.
There is one binay variable per edge in the clique tree. If this variable equals 1, it means that
the cliques at the ends of the edge will be merged. We allow at most one combination per
clique and combinations that result in a clique of size greater than a certain size are forbidden.
The objective is to maximize the number of linking constraints that will be eliminated thanks
to the combinations. More precisely, the model is the following :

max 0.5
∑

e∈E nc(Ce)(nc(Ce) + 1)xe

s.t. size(Ce)xe ≤ Smax ∀e ∈ E∑
e∈E(i) xe ≤ 1 ∀i ∈ L

xe ∈ {0, 1} ∀e ∈ E

(IP)

with
— U = (L, E) the clique tree computed for a given decomposition ;
— nc(Ce) = |Ci

⋂
Cj | the number of common nodes for e = (Ci, Cj) ∈ E ;

— size(Ce) = |Ci|+ |Cj | − |Ci
⋂

Cj | the size of the merged clique for e = (Ci, Cj) ∈ E ;
— Smax a parameter that defines the maximal size of merged cliques ;
— E(i) the set of edges that have i as extremity.

Number of times (IP) is applied 0 1 2 3 4 5 6
Total resolution time (seconds) 3397 2316 1807 1691 1533 1710 1826

TAB. 3 – Total MOSEK resolution time for MATPOWER instances

This algorithm has been tested with the solver Xpress for Smax = 50 and the results are
presented in Table 3. This table represents the evolution of the total resolution time depending
on the number of times the combination algorithme (IP) is used. This table shows that applying
this algorithm at least once improves significatively MOSEK resolution time and the best
time is obtained when the algorithm is applied 4 times. Therefore, it is worth combining
cliques, i.e., adding more edges in the chordal extension, to improve the performance of a given
decomposition for ACOPF problems.

6 Conclusion and future work
Sections 4 and 5 show that, for ACOPF problems, there is no real reason to build chordal

extensions with as few added edges as possible since adding more edges can lead to better
performance. These results encourage us to change the approach for computing chordal exten-
sions and in the future we will focus on the formulation of an adapted heuristic that computes
performant chordal extensions for ACOPF problems.
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