
Algorithmic configuration by learning and
optimization

Claudia D’Ambrosio1, Antonio Frangioni2, Gabriele Iommazzo1,2, Leo Liberti1

1 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
{dambrosio, giommazz, liberti}@lix.polytechnique.fr
2 Dip. di Informatica, Università di Pisa, 56127, Pisa, Italy

frangio@di.unipi.it

Mots-clés : algorithm configuration, mathematical programming, machine learning, opti-
mization solvers

In this work we propose a methodology, based on machine learning and optimization, for
selecting a solver configuration for a given instance.

General-purpose Mathematical Programming (MP) solvers have long lists of user-configurable
parameters; tweaking them influences how the available algorithmic components work and in-
teract. Therefore it can have a significant impact on the quality of the obtained solution
and/or on the efficiency of the solution process. Good solvers have effective default parameter
configurations, carefully selected to provide “good” performances in most cases. Furthermore,
solvers may embed heuristics that try to automatically adapt the parameter configuration to
the characteristics of the instance at hand. However, default/automatic parameter configura-
tions may still be highly suboptimal with specific instances, which requires a manual search
for the best parameter values. The motivation for this work lies in the fact that, due to the
large amount of available parameters, manual tuning is highly nontrivial and time-consuming.
This setting is an instance of the Algorithm Configuration Problem (ACP) [1].

Our approach for addressing the ACP on MP solvers is based on a two-fold process:

(i) in the Performance Map Learning Phase (PMLP), we employ supervised Machine Learn-
ing (ML) techniques [2] in order to learn a performance function of the solver, which maps
some features of the instance being solved, together with a given parameter configura-
tion, into some measure of solver efficiency and effectiveness. Notably, the training set
is obtained by running the solver, with several configurations, on instances of a specific
Mixed Integer Programming (MIP) problem and measuring the integrality gap achieved
within a fixed time limit;

(ii) the formal properties defining the ML methodology underlying the PMLP are trans-
lated into MP terms. The resulting formulation, together with constraints encoding the
compatibility of the configurations’ parameter values, is called the Configuration Space
Search Problem (CSSP), a Mixed-Integer Nonlinear Program (MINLP) which, for a given
instance, finds the configuration providing optimal performance w.r.t. the performance
function. The actual implementation of the CSSP depends on the MP formulation se-
lected to encode the learned performance function.

The main novelty of our approach lies in the fact that we explicitly model and optimize the
CSSP using the mathematical description of the ML technique used to learn the performance
function. This is in contrast to most of the existing algorithmic configuration approaches,



which instead employ heuristics (such as experimental design methods [3], local searches [4],
genetic algorithms [5], evolutionary strategies [6] and other methods [7, 8]), that are typically
unfit for scaling to a huge parameter space such as, say, that of a MILP solver (e.g. IBM ILOG
CPLEX [9]).

References
[1] Eggensperger, K. and Lindauer, M. and Hutter, F., Pitfalls and Best Practices in Algo-

rithm Configuration, CoRR, abs/1705.06058, 2017.

[2] Mohri, M. and Rostamizadeh, A. and Talwalkar, A., Foundations of Machine Learning,
The MIT Press, 2012.

[3] Adenso-Díaz, B. and Laguna, M., Fine-tuning of algorithms using Fractional Experimental
Design and Local Search, Operations Research, 54, 1, 99–114, 2006.

[4] Hutter, F. and Hoos, H. H. and Leyton-Brown, K. and Stützle, T., ParamILS: An Auto-
matic Algorithm Configuration Framework, J. Artif. Int. Res., 36, 1, 267–306, AI Access
Foundation, 2009.

[5] Ansótegui, C. and Sellmann, M. and Tierney, K., A Gender-based Genetic Algorithm for
the Automatic Configuration of Algorithms, Proceedings of the 15th International Con-
ference on Principles and Practice of Constraint Programming, CP’09, 142–157, Springer-
Verlag, Berlin, Heidelberg, 2009.

[6] Brendel, M. and Schoenauer, M., Instance-based Parameter Tuning for Evolutionary AI
Planning, Proceedings of the 13th Annual Conference Companion on Genetic and Evolu-
tionary Computation, GECCO ’11, Dublin, Ireland, 591–598, ACM, 2011.

[7] Belkhir, N. and Dreo, J. and Savéant, P. and Schoenauer, M., Feature Based Algorithm
Configuration: A Case Study with Differential Evolution, 9921, PPSN XIV, 156-165, 2016.

[8] López-Ibáñez, M. and Dubois-Lacoste, J. and Pérez Cáceres, L. and Birattari, M. and
Stützle, T., The irace package: iterated racing for automatic algorithm configuration,
Operations Research Perspectives, 3, 43–58, 2016.

[9] IBM, IBM ILOG CPLEX Optimization Studio CPLEX Parameters Reference, Version 12
Release 8, 2017


