
Data-driven maintenance optimization

Victor Cohen1,Axel Parmentier1

Ecole des Ponts Paristech, CERMICS (ENPC), F-77455 Marne-la-Vallée, France
{victor.cohen,axel.parmentier}@enpc.fr

Mots-clés : Data-driven maintenance, Markov Decision Processes, Linear Programming

1 Introduction

Context. The quantity of data available on industrial systems has dramatically increased
in the last few years. The goal of predictive maintenance is to exploit this data to predict
failures, maintain the equipments before they fail, and reduce the overall maintenance costs.
Our objective is to provide a data-driven optimization framework for airplane maintenance.
Airlines performances largely depend on their ability to operate their airplanes as much as
possible and reliably. For each equipment of an airplane, the airline has access to a collection
of 20 to 200 time series corresponding to different kinds of signals recorded during flights,
such as the temperature of a pump. When an airplane arrives in maintenance, the airline uses
this data to decide which equipments it should maintain. Maintenance decisions must strike a
balance between costs due to over-maintenance and due to equipments failures. Besides, since
maintenance slots are rare, airlines must prioritize between different equipments.

Our goal is to provide a decision support methodology that, given the information available
at the beginning of a maintenance slot, indicates which equipments should be maintained. To
achieve this goal, we do not have any model or simulator of the equipments behavior, but
we have several years of historical data containing sensors values, several failure dates, and
maintenance dates. The problem we consider is therefore a data-driven multistage stochastic
optimization problem.

Current approach and its limits. In their current practice, the airline maintenance engi-
neers use fault trees to support their decisions. It takes in input a high-dimensional vector of
features extracting relevant information from the time series. Using a succession of binary rules
splitting the features space in two, it partitions this high-dimensional feature space into a small
number of clusters. Each of the clusters has a meaning from an engineering point of view: some
correspond to normal behavior, some to high failure risk. The engineers maintain the equip-
ment if it is in a high failure risk cluster. An example of fault tree is illustrated on Figure 1.
Using machine learning terminology, a fault tree is a decision tree, generally hand-designed and
of small size. This approach reduces the failures and maintenance costs when a small number
of failure-prone equipments are considered. Indeed, when only very few equipments are consi-
dered, prioritizing between equipments is not an issue, and this heuristic makes perfectly sense.
Furthermore, the fault tree used can make these diagnosis very accurately because it leverages
a physical understanding of the equipments.

However, such an approach cannot be extended to a large number of equipments. When there
are many equipments and scarce maintenance resources, anticipating the future on several
decision steps becomes crucial, and a fault tree-based heuristic cannot work anymore. We
therefore need a richer multistage stochastic optimization approach, which itself requires a
richer prediction model. 1

(avg pressure, std temperature)

avg pressure ≥ 1.5

std temperature ≤ 90

3 2

1

Yes

Yes No

No

FIG. 1 – An example of fault tree that takes in
input the average (avg) of the pressure and the
standard deviation (std) of the temperature. It
returns a discrete label in {1, 2, 3}. Each label
corresponds to a cluster. Clusters 1 and 2 cor-
respond to normal behavior (blue), and cluster
3 corresponds to high-failure risk (red).

Flight leg

Maintenance
operations

Maintenance
operations

System’s evolution

Sensor data

Observation in Rd

(non interpretable)

Interpretable
information

Maintenance decision

prediction

Features extraction

Evolution:
Gaussian HMM structure

Fault tree (1 for each component)

Policy

FIG. 2 – The three elements of our approach: the prediction model(in blue),
the fault tree(in green) and the policy (in red).

How to build a prediction model trusted by maintenance engineers. Maintenance
operations are expansive and time consuming. And when a failure happens, the airline has
to cancel the next flights operated by the airplane, which is even more expensive. Hence, our
statistical model and the maintenance decisions suggested by our approach must be trusted
by the maintenance engineers. There are two ways of building trust in models: experimental
testing, or validation by experts that understand the model. A specific difficulty comes from the
fact that the data are censored. Indeed, airlines try to avoid failures as much as possible, which
leads to a small number of failures observed on the whole history of each equipment. Given
the small number of failures in our dataset, and that we do not have access to a simulator,
experimental validation is not possible. We must therefore propose a model that maintenance
experts can validate.

Our approach represented on Figure 2, solves that conundrum as follows: our model takes
decision using only information that maintenance experts can easily understand. Since fault
trees are the standard method used by the engineers of our airline to take maintenance decisions
we interpret “information that maintenance expert can easily understand” as “the result of a
small size fault tree”. We use a statistical model to predict the evolution of the system, which
we observe only through sensor data. We observe a vector of features in Rd for each component,
where d is the number of features, extracted from the sensor data. An example of feature can
be the average pressure in a pump over a flight. We have vector of features for each component.
To predict the evolution of these observations, we use a Hidden Markov Model (HMM) with
finite state space and Gaussian observations (in blue on Figure 2). We then use a fault tree (in
green on Figure 2), which turns features into informations that can be interpreted by experts.
Finally, the policy (in red on Figure 2) turns this interpretable information into a maintenance
decision. We insist on the fact that only the fault tree is validated by experts. Since we do not
have a simulator for the airplane equipments, we evaluate the performance of our approach
using a simple simulator of a system with multiple components.

Literature review. The tools we used to build our statistical model are well-known in pre-
dictive maintenance literature: HMMs and fault trees. The originality of our work lies in the
way we combine these tools to obtain a HMM with discrete states and discrete observations,
where observations can easily be interpreted by maintenance engineers. The resulting optimi-
zation problem we obtain is a Partially Observed Markov Decision Process (POMDP).

Our HMMs model a component’s degradation. Their latent variables represent the degrada-
tion states, and their observed variables correspond to the available vector of features in Rd [7].

While in airline industry the fault trees are hand-designed, state-of-the-art machine learning
algorithms allow to automatically learn decision trees that can be interpreted as fault trees
[11].

POMDPs have already been used to model maintenance problems [6, Sec 12.5] with a single
component. The component’s degradation is modeled using a discrete-time Markov chain in
a finite space and the observations are emitted randomly and independently given current
state. Each state transition leads to an immediate reward and the goal is to maximize the
expected average reward over a finite horizon. However, the POMDPs we consider model a
system with multiple components. Due to the curse of dimensionality [9], usual POMDPs
algorithms Krishnamurthy [6] cannot solve optimally our problem. Indeed, the state space and
observation space grow exponentially with the number of components. Recent work [1] gives
new approximate policies for a similar problem. However, the statistical model considered has at
most two or three degradation states for each component, which limits the prediction’s quality
of component’s deterioration. Our optimization approach admits a more complex statistical
model. We choose to restrict our POMDP to memoryless policies, i.e., policies that only depend
on the current observation instead of the history of decisions and observations [8]. To the best
of our knowledge, there is no compact formulation that solves a POMDP with memoryless
policies.

Contributions. Our contribution is threefold.
1. We introduce a general data-driven approach to the maintenance problem. It takes sensor

data in input, and the components to maintain in output at each maintenance slot.
Numerical experiments (Section 5) on simulated systems with several components show
that our approach leads to about 45% cost saving over the current practice in the airline
industry.

Making this approach required several contributions. First, we propose a new statistical model.
2. Even if HMMs and decision trees are well-known in predictive maintenance literature,

it is not common to combine them to learn a HMM with discrete and interpretable
observations from continuous sensor data. The technical challenge was to learn a decision
tree that turns continuous non-interpretable features into a finite set of interpretable
observation. (Section 3)

Second, on the optimization part, we make several contributions to the literature on POMDPs.
3. A mixed integer linear program (MILP) that solves optimally a POMDP in the set of

memoryless policies. To the best of our knowledge, it is one of the fastest method to
solve POMDP in the set of memoryless policies. Furthermore, the linear relaxation of
our MILP provides an upper bound on the value of the POMDP. (Section 4)

4. An extended formulation with new valid inequalities that improve the resolution of our
MILP. Such inequalities come from a probabilistic interpretation of the dependence bet-
ween random variables. (Section 4)

5. A MILP-based heuristic to solve POMDPs with multiple components (Section 4). It
leverages a weakly coupled POMDPs modeling where each component evolves indepen-
dently and individually as a POMDP. It extends the definition of weakly coupled Markov
Decision Processes (MDPs) of Adelman and Mersereau [2] to POMDPs. (Section 2).

We emphasize that our approach is easy to implement since it only requires the use of a machine
learning toolbox and a MILP solver.

2 Model
The system is composed of M components. At each maintenance slot t ∈ {1, 2, . . .}, the

decision maker receives a observation Om
t from component m, that belongs to a finite space

Xm
O . The degradation of componentm is modeled using a state Sm

t , that belongs to a finite state

space Xm
S and is not observed by the decision maker. We assume that there is a failure state

sm,F in Xm
S for each component m in [M]. Let XS = X 1

S ×· · ·×XM
S and XO = X 1

O×· · ·×XM
O

be the state space and observation space of the complete system. In practice the sensor data
observed are continuous. Hence, Xm

O should be a continuous space. However, the statistical
methodology of Section 3 shows how we can learn from continuous data a model with Xm

O

finite.
Component m starts in state s with probability pm(s). At each time t, component m is

in state Sm
t = s, it emits an observation Om

t = o with probability pm(o|s). Then, based on
the observations of the full system Ot = (O1

t , . . . , O
M
t), the decision maker takes an action

At =
(
A1

t , . . . , A
M
t

)
in a finite space XA, where Am

t is the action taken on component m. Since
the decision maker can maintain at most one component at each maintenance slot, we assume
that the set of action is XA =

{
a = (a1, . . . , aM) ∈ {0, 1}M s.t

∑M
m=1 a

m ≤ 1
}

and Am
t = 1

indicates that component m is maintained. We assume that when a component is maintained,
it behaves like a new one. Each component m then evolves independently from state Sm

t = s to
state Sm

t+1 = s′ with probability pm(s′|s, a), and the decision maker receives reward rm(s, a, s′).
Then, pm(s′|s, a) is equal to pm(s) if a = 1, and pm(s′|s) otherwise. The probabilities factorize
as

P(Ot = o|St = s) =
M∏

m=1
pm(om|sm), and P(St+1 = s′|St = s,At = a) =

M∏
m=1

pm(s′m|sm, am),

where St = (S1
t , . . . , S

M
t) for all t ≥ 1. We associate a maintenance cost Cm

R and a failure
cost Cm

F to each component m. The individual immediate reward function can be written
rm(sm, am, s′m) = −1s′m=sm

F
Cm

F −1am=1C
m
R . We assume that the reward decomposes additively:

r(s,a, s′) =
∑M

m=1 rm(sm, am, s′m). We suppose that we look over a finite horizon T . We
explain this assumption at the beginning of Section 4. The choices made by the decision
maker are modeled using a policy δ = (δ1, . . . , δT), where δt is the conditional probability
distribution of action At given observation Ot. We introduce the set of policies ∆ defined as
follows ∆ =

{
δ ∈ RT×|XA|×|XO|,

∑
a∈XA

δt
a|o = 1 and δt

a|o ≥ 0,∀o ∈ XO,a ∈ XA

}
. The goal is to

find a policy δ maximizing the average expected reward over the horizon T

max
δ∈∆

Eδ
[T∑

t=1
r(St,At,St+1)

]
, (1)

where the expectation in (1) is taken with respect to the distribution Pδ induced by δ. Pro-
blem (1) is a POMDP restricted to the set of memoryless policies ∆, which is a NP-hard
problem [8]. In a POMDP, the policy usually depends on the history of observations and ac-
tions at each time step, which leads to its PSPACE-completeness [9]. We choose a memoryless
policy for two reasons. First, maintenance technicians can easily apply them in practice. Second,
weakly coupled POMDPs are practically intractable even for a small number of components.
For example, if M = 3 and |Xm

S | = |Xm
O | = 10, then POMDP solvers cannot solve it.

3 Learning the model
The purpose of this section is to explain how to learn the parameters of the weakly coupled

POMDP (pm(s), pm(s′|s), pm(o|s))s,s′,o,m. This task is done in two steps. We first learn the
parameters of a Gaussian HMM, and then, we learn a fault tree to make the observations
discrete and interpretable. Since our methodology can be applied to any component, we omit
index m in this section.

Gaussian HMM. At each time t, let Xt ∈ Rd be the continuous observation where d ∈ N is
the dimension. We make the widely used assumption that the continuous observations follow a

Gaussian distribution given the current state, i.e., Xt|St = s ∼ N (αs,Σs) for all s ∈ XS , where
αs ∈ Rd and Σs ∈ Rd×d. This normality assumption is sound for a deteriorating system[5,
p.585]. For generic HMM, there is no restriction on the choice of p(s′|s). Since we model a
deteriorating system, we enforce this deterioration in the parameters of HMM using a left-right
HMM, i.e., there exists an total ordering < on XS and p(s′|s) = 0 when s′ < s. The assumption
means that a component cannot repair itself. Given the dataset of observations, we estimate
parameters (p(s), p(s′|s), αs,Σs)s,s′∈XS

using Baum-Welch algorithm [10]. The number of states
|XS | is also optimized using the Bayesian Information Criterion [7].

Fault tree. We explain how to learn a fault tree. We precise the input/output of the fault
tree. Let x1, x2, . . . , xT̃ ∈ Rd be a sequence of T̃ continuous observations, with T̃ ∈ N. We
compute the most probable sequence of states ŝ1, ŝ2, . . . , ŝT̃ using the Viterbi algorithm [10].
Then, we learn a decision tree that takes as input xt and predicts ŝt, for all t in [T]. The decision
tree obtained f̂ is a classification tree that maps any continuous observations to discrete states,
i.e., f̂ : Rd → XO where XO = XS is a finite space. We choose the most frequently used CART
(Classification And Regression Trees) algorithm to learn f̂ . Then, the emission probabilities
can be written p(o|s) = E

[
1{f̂(Xt)=o}|St = s

]
for all s ∈ XS and o ∈ XO. Hence, we can

compute it easily with Monte-Carlo simulation, even in large dimension.

4 Decision making
We have now a weakly coupled POMDP and we explain how to solve it. We choose to solve

the problem over a finite horizon for two reasons. First, since we only have estimated HMM
parameters, the prognostic over long horizon may be inaccurate. Second, in practice the airline
would like to modify the planning only over a short horizon. We introduce a Mixed-Integer
Linear Program (MILP) that solves Problem (1) with only one component (M = 1). We
propose a tractable MILP-based heuristic to solve the weakly coupled POMDPs with M ≥ 1.

Single component. We define the set of deterministic policies ∆d = ∆ ∩ {0, 1}T×|XA|×|XO|.
It is known that there always exists an optimal deterministic policy for Problem (1) [3, Prop.
1]. We introduce a collection of variables (µ =

(
(µt

s)s, (µt
sa)s,a, (µt

soa)s,o,a

)
t
, δ = (δ1, . . . , δT) and

the following mixed-integer linear program (MILP).

max
µ,δ

T∑
t=1

∑
s,s′∈XS
a∈XA

r(s, a, s′)p(s′|s, a)µt
sa (2a)

s.t. µ1
s = p(s) ∀s ∈ XS (2b)
µt+1

s′ =
∑

s∈XS ,a∈XA

p(s′|s, a)µt
sa ∀s′ ∈ XS , t ∈ [T] (2c)

µt
sa =

∑
o∈XO

µt
soa ∀s ∈ XS , a ∈ XA, t ∈ [T] (2d)

µt
soa ≤ p(o|s)µt

s ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T] (2e)
µt

soa ≤ δt
a|o ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T] (2f)

µt
soa ≥ p(o|s)µt

s + δt
a|o − 1 ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T] (2g)

δ ∈ ∆d, µ ≥ 0 (2h)

Let v∗ and z∗ respectively denote the optimal values of Problem (1) and Problem (2).

Theorem 1. Let (µ, δ) be a feasible solution of MILP (2). Then µ is equal to the distribu-
tion Pδ induced by δ, and (µ, δ) is an optimal solution of MILP (2) if, and only if δ is an
optimal deterministic policy of Problem (1). Furthermore, v∗ = z∗, and the linear relaxation
of MILP (2) gives an upper bound of the POMDP.

Theorem 1 ensures that µt
s, µt

sa and µt
soa respectively represent the probabilities Pδ

(
St = s

)
,

Pδ
(
St = s, At = a

)
and Pδ

(
St = s,Ot = o, At = a

)
. It means that constraints of MILP (2)

encode a solution µ that satisfies all conditional independences between the random variables.
In particular, constraints (2e), (2f) and (2g) correspond to the exact linearization of non linear
constraints µt

soa = δt
a|op(o|s)µt

s, for all s in XS , o in XO, a in XA and t in [T], ensuring that At

is conditionally independent of St given Ot. Such independences are no longer enforced in the
linear relaxation of Problem (2), since the linearization is no longer exact.
We now introduce an extended formulation and valid inequalities that enable to restore slightly
weaker independences in the linear relaxation of MILP (2): At is independent from St given Ot,
At−1 and St−1. We introduce new variables µt

s′a′soa that can be interpreted as the probabilities
P(St−1 = s′, At−1 = a′, St = s,Ot = o, At = a). Consider the following equalities∑

s′∈XS ,a′∈XA

µt
s′a′soa = µt

soa, ∀s ∈ XS , o ∈ XO, a ∈ XA, (3a)

∑
a∈XA

µt
s′a′soa = p(o|s)p(s|s′, a′)µt−1

s′a′ , ∀s′, s ∈ XS , o ∈ XO, a
′ ∈ XA, (3b)

µt
s′a′soa = p(s|s′, a′, o)

∑
s∈XS

µt
s′a′soa, ∀s′, s ∈ XS , o ∈ XO, a

′, a ∈ XA, (3c)

where p(s|s′, a′, o) = P(St = s|St−1 = s′, At−1 = a′, Ot = o). Equalities (3) are valid inequalities
for Problem (2) and provide a tighter root relaxation. It helps the resolution in practice [4].

Multiple components. Since a weakly coupled POMDP is a POMDP, we can still solve
Problem (1) using MILP (2). However, the number of constraints and variables grows exponen-
tially with the number of components M , and even the linear relaxation of MILP (2) becomes
quickly intractable. We propose a heuristic that repeatedly solves a tractable MILP. We intro-
duce new variables τm =

(
(τ t,m

s)s, (τ t,m
sa)s,a, (τ t,m

soa)s,o,a, (τ t,m
a)a

)
t∈[T]

, δm = (δt,m)t∈[T] for all m
in [M], and the following mixed-integer linear program.

max
τ ,δ

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S

a∈{0,1}

rm(s, a, s′)pm(s′|s, a)τ t,m
sa (4a)

s.t. (τm, δm) satisfy constraints of (2) ∀m ∈ [M] (4b)∑
s∈Xm

S

τ t,m
sa = τ t,m

a ∀a ∈ {0, 1},m ∈ [M], t ∈ [T] (4c)

∑
m∈[M]

τ t,m
1 ≤ 1 ∀t ∈ [T] (4d)

Variables (τ t,m
s)s, (τ t,m

sa)s,a, (τ t,m
soa)soa, and (τ t,m

a)a can still be interpreted as probability distri-
butions on Xm

S , Xm
S × {0, 1}, Xm

S × Xm
O × {0, 1}, and {0, 1}. However, there is no guarantee

that there exists a joint distribution on (XS × XO × XA)T from which they can be derived as
marginal distributions. Constraints (4d) ensure that the individual POMDPs are linked by the
maintenance capacity constraints. In practice, this new formulation gives good performances
on a deteriorating system. The size of MILP (4) is tractable since the size of action space of
each component is 2. Therefore, the policy can characterized by δt,m

1|o for o ∈ Xm
O , m ∈ [M] and

t ∈ [T]. Hence the number of binary variables is T
∑

m∈[M] |Xm
O |. Furthermore, constraints (3)

can be added in MILP (4) to strengthen the linear relaxation.

Heuristic. We propose a heuristic policy in Algorithm (1) for weakly coupled POMDPs (1)
that solves MILP (4) at each decision time. Note that when we solve Problem (4), the initial
state probability distribution corresponds to the current belief state, denoted bm(s) for each
component m in [M]. Given a new observation and the last action, we update the belief state
over time according to the belief update [6, Eq. (7.11)].

Algorithm 1 Heuristic policy for Problem (1)
1: Input T , pm, bm, rm for all m ∈ [M], observation õ ∈ XO, action ã ∈ XA

2: Compute current belief state b̃m using õm and ãm in the belief update for all m in [M]
3: Solve Problem (4) with initial observation õ and initial probability distribution (b̃m)m∈[M]

to obtain an optimal solution τ
4: Compute an τ 1,M+1

1 = 1−
∑M

m=1 τ
1,m
1

5: Let a∗ ∈ argmaxm∈[M+1] τ
1,m
1

6: If a∗ = M + 1, do nothing, otherwise replace a∗

Note that each iteration of Algorithm 1 solves a MILP with a polynomial number of constraints
and variables. Numerical experiments in Section 5 show the efficiency of this heuristic.

Remark 1. If K components can be replaced in maintenance with K ≥ 1, then we replace the
right-hand side of constraint (4d) by K. Hence, we modify steps (4) to (6) in order to replace
the K components which have the greatest value of τ 1,m

1 and above τ 1,M+1
1 . 4

5 Numerical experiments
In airline industry, maintenance decisions are taken given leverages the binary output of the

fault tree {0, 1}. An equipment is maintained when the fault tree returns 1, i.e., diagnoses the
presence of failure. We would like to benchmark our approach against this current practice
in industry. Since we cannot evaluate it on a real dataset, we construct a simulator of a
deteriorating system based on the predictive maintenance literature and we reproduce the
current practice on such a system. Then, we present the benefits of using our policy over
the current practice on such system. We used the library scikitlearn for all machine learning
algorithms. All linear programs have been implemented in Julia with JuMP interface and solved
using Gurobi 7.5.2. Experiments have been run on a server with 192Gb of RAM and 32 cores
at 3.30GHz.

System’s description. We want to simulate a system composed of M deteriorating com-
ponents over a simulation time H. Each time t corresponds to a maintenance slot. The main-
tenance slots are periodically scheduled with fixed interval time h, i.e., t × h is the time of
maintenance slot t. Several cracks are present in each component of the system. The deteriora-
tion of the component corresponds to the propagation of the cracks. Between two maintenance
slots t and t+ 1, we have access to noisy measurements Xm

i ∈ R3 of the crack depth evolution
at each time i ∈ [th, (t+ 1)h] for each component m ∈ [M]. We assume that we do not need
to perform feature extraction on this system. We assume that the crack depth in each com-
ponent evolves independently according to the Fatigue Crack Growth (FCG) model, which is
the mostly used model in maintenance predictive literature [7]. It ensures that the crack depth
is driven by the Paris-Erdogan differential equation [7, Eq. (15)]. To simulate the evolution of
a crack in a component, we use the discretization scheme described in Le et al. [7, Eq. (16)].
In addition to this model, we allow the crack propagation rate to increase randomly over time.
A complete description of our crack depth propagation simulator is available here 1.

Current practice. We try to reproduce the current practice on our system. We learn a fault
tree that detects when the crack depth is close to a critical threshold. In our case, we choose
the 90th percentile, which represents the preventive aspect of the current practice. We choose
to learn the decision tree using CART algorithm. The accuracy of such a learned tree is around
95%, which is much better than what is used in practice. If there are more than one component
for which the corresponding decision tree returns 1, then we select the one with the highest
value of Cm

F − Cm
R or we select randomly if these values are equal.

1. https://github.com/Victor2175/maintenance_system

https://github.com/Victor2175/maintenance_system

Results. We consider the policy (1) for different rolling horizon time T = 1, 2, 5, and the
current practice in industry (Ind.). We evaluate each policy on different number of components
M ∈ {3, 5} and different interval time h ∈ {30, 50}. Our statistical approach gives HMMs
between 5 and 10 states for each component. For each value of M , we randomly draw 30 sets
of parameters, where a set of parameters characterizes a system of multiple components, and
for each of them we simulate 50 times each policy. In total, for each value of M , a policy is
evaluated 1500 times. All results below presents average values over the 1500 evaluations. A
simulation consists in 200 maintenance slots regularly distributed on a periodic basis of h.
We set the maintenance costs Cm

R = 10 and the failure costs Cm
F = 100 for each component

m ∈ [M]. Table 1 and 2 respectively summarize the results obtained for h = 30 and h = 50.
The first column indicates the number of components M . The second column indicates the
policies used. Finally, the last three columns provide the average policy time, i.e., the time to
solve MILP (4) at each maintenance slot, the percentage of average cost saving over policy Ind.,
and the average number of failures. The numerical results show that our approach outperforms
the current practice in most examples and the computation time is reasonable.

M Policy Time (s) Cost (%) Failures
3 Ind. - - 12.8

Alg. (1), T = 1 0.001 49.4 3.3
Alg. (1), T = 2 0.007 54.0 1.8
Alg. (1), T = 5 0.12 55.3 1.2

5 Ind. - - 28.4
Alg. (1), T = 1 0.002 38.5 12.5
Alg. (1), T = 2 0.01 45.5 8.8
Alg. (1), T = 5 0.35 49.3 5.9

TAB. 1 – Policy performances for different number of com-
ponents M and a time interval h = 30

M Policy Time (s) Cost (%) Failures
3 Ind. - - 26.9

Alg. (1), T = 1 0.001 53.1 7.4
Alg. (1), T = 2 0.008 50.6 6.8
Alg. (1), T = 5 0.2 54.5 4.7

5 Ind. - - 43.5
Alg. (1), T = 1 0.002 54.4 12.6
Alg. (1), T = 2 0.02 58.3 9.9
Alg. (1), T = 5 0.3 58.6 9.1

TAB. 2 – Policy performances for different number of com-
ponents M and a time interval h = 50

Références
[1] Abderrahmane Abbou and Viliam Makis. Group maintenance: A restless bandits ap-

proach. INFORMS Journal on Computing, 31(4):719–731, 2019.
[2] Daniel Adelman and Adam J. Mersereau. Relaxations of weakly coupled stochastic dyna-

mic programs. Operations Research, 56(3):712–727, 2008.
[3] J. A. Bagnell, Sham M Kakade, Jeff G. Schneider, and Andrew Y. Ng. Policy search by

dynamic programming. In Advances in Neural Information Processing Systems 16, pages
831–838. MIT Press, 2004.

[4] Victor Cohen and Axel Parmentier. Linear programming for decision processes with partial
information, 2018.

[5] Michael Jong Kim and Viliam Makis. Optimal control of a partially observable failing
system with costly multivariate observations. Stochastic Models, 28(4):584–608, 2012.

[6] V. Krishnamurthy. Partially observed markov decision processes: From filtering to control-
led sensing. 01 2016.

[7] Thanh Trung Le, Florent Chatelain, and Christophe Bérenguer. Hidden Markov Models
for diagnostics and prognostics of systems under multiple deterioration modes. In 24th
European Safety and Reliability Conference, Sep 2014.

[8] Michael L. Littman. Memoryless policies: Theoretical limitations and practical results. In
In, pages 238–245. The MIT Press, 1994.

[9] Christos Papadimitriou and John N. Tsitsiklis. The complexity of markov decision pro-
cesses. Math. Oper. Res., 12(3):441–450, aug 1987.

[10] L. R. Rabiner and B. H. Juang. An introduction to hidden markov models. IEEE ASSp
Magazine, 1986.

[11] Alice X. Zheng, J. Lloyd, and E. Brewer. Failure diagnosis using decision trees. In
Proceedings of the First International Conference on Autonomic Computing, 2004.

	Introduction
	Model
	Learning the model
	Decision making
	Numerical experiments

