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1 Introduction
With the fight against climate change and the need to reduce our dependence on polluting energy
sources, the French government has put legislation in place to promote the adoption of distributed
renewable energy production. An example of such legislation is the one on collective self-consumption
enacted on the 26th of July 2016 [1]. A collective self-consumption agreement is one between different
consumers and producers who decide to collectively consume the locally produced renewable energy.

In the proposed model, we consider a community which has multiple decision makers with con-
flicting objectives: an aggregator, who decides how the produced energy is distributed among the
agreement’s members, and consumers who minimize their energy bills in response.

This generates a hierarchical decision problem, modeled as a bilevel optimization program in which
the aggregator is the leader and the agreement’s members are the followers.

2 Optimization models

2.1 Bilevel model
The bilevel problem can be formulated as follows (1):

min
p≥0

A(p, f(p)) (1a)

gi(fi(p), p) ≤ 0 , ∀i ∈ N (1b)
fi(p) ∈ argmin LT

i fi , ∀i ∈ N (1c)
Aifi +Dip ≤ bi (1d)

The function A(.) represents the aggregator’s objective and (gi)i∈N ≤ 0 a set of constraints that the
upper level must verify for every agent i in the set of agreement’s members N . Each agent i must
minimize their objective function subject to local constraints (1d). In this case, the agent’s objective
function and constraints depend on both upper and lower level variables. In problem (1) the upper
level variables are denoted in red and the lower level variables in blue. Li is a vector representing the
cost function of agent i. Ai and Di are constraint matrices. bi is a vector representing input data to
the problem.



2.2 Single-level formulations
Under certain assumptions [2], we can reduce the bilevel program to a single-level by imposing the
KKT conditions for lower level optimality. Based on different expressions of these optimality con-
ditions, we obtain two equivalent single-level formulations. The first gives a Mathematical Program
with Complementarity Constraints (MPCC) (1a), the second gives a Non-Convex Quadratically
Constrained Program (QCP) (1b).

min
p≥0

A(p, f)

s.t. ∀i ∈ N :
gi(fi, p) ≤ 0
Aifi +Dip ≤ bi

AT
i λi ≤ Li

λi ≤ 0, fi ≥ 0
λi

T (Aifi +Dipi − bi) = 0
fi

T (AT
i λi − Li) = 0

(a) First Single-level formulation: MPCC

min
p≥0

A(p, f)

s.t. ∀i ∈ N :
gi(fi, p) ≤ 0
Aifi +Dip ≤ bi

AT
i λi ≤ Li

λi ≤ 0, fi ≥ 0
LT

i fi = λT
i (bi −Dipi)

(b) Second Single-level formulation: QCP

The objective of this talk is to compare, through numerical experiments, the two formulations
given above.

3 Numerical Results
We consider an agreement between three agents. Each one represents a residential building with
energy consumption flexibilities of two different kinds: a local battery and a water heating system.
We assume that the agents have invested in a collective battery, which is centrally managed by the
aggregator.

By solving linear relaxations of the above single-level formulations, we obtain a lower bound for
the original problem (1). By solving the lower level problem considering a fixed upper level decision,
we obtain a feasible solution for the bilevel problem (1), thus an upper bound.

The table below gives the average gap W (standard deviation σ(W )) and computation time T for
30 different instances generated randomly for a collective self-consumption community of 3 buildings
with simulated consumption data and realistic systems’ capacities.

Results W σ(W ) T σ(T )
MPCC 4.57× 10−4 8×10−4 37.30 s 49.39 s
QCP 4.8×10−3 5.1×10−3 1.56 s 1.43 s

As shown in the above table, the MPCC formulation provides solutions with a better average gap,
but a longer average computing time. For a large number of agents, the QCP formulation is more
reliable.
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