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Risk measures play a major role in the design of safe and robust decisions for optimiza-
tion problems under uncertainty. In this talk, we focus on convex risk functions involving the
conditional value at risk. We present an open-source python toolbox with fast computational
procedures.

1 Risk Averse Optimization
The conditional value at risk is an essential tool for the modeling of convex risk problems

e.g. in mathematical finance or in machine learning. For a random variable X and a probability
level p ∈ [0, 1), the conditional value at risk of X, denoted CVar(X), is defined as :

CVar(X) = 1
1− p

∫ 1

p′=p
Qp′(X)dp′ (1)

where Qp′(X) denotes the p′-quantile of the random variable X. Minimizing CVar-based risk
functions amounts to focus on the worst case scenarios. In this talk, we consider efficient first-
order methods for the resolution of :

min
w∈Rd

CVar(f(w, ξ)) (2)

where ξ is an m−dimensional random vector and f : Rd × Rm → R is a designed loss.
Several standard risk-averse problems embrace this form. We mention for instance the so-

called quantile regression [4], which can be reformulated as :

min
w∈Rd

CVar(Y − w>X) (3)

where (X, Y ) is the couple of random variables involved in the regression.
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FIG. 1 – Quantile Regression for a linear and a quadratic model



2 Resolution by first-order methods : Approach and Toolbox
From an optimization perspective, (1) is usually reformulated as [4] :

CVar(X) = inf
η∈R

{
η + 1

1− pE[max(X − η, 0)]
}

(4)

which enjoys some evident convex properties. However, the presence of a max term in (4) makes
possibly non-smooth the objective function of (2). Under some assumptions of convexity of f ,
we propose, based on the theory of [5], to derive the subdifferential of CVar ◦ f at any point.
The formula obtained enables us to locate the places where non-smoothness occurs and to link
them to the properties of the random variable ξ involved.

We propose in addition to apply the standard smoothing procedure of [2] to obtain a smooth
approximation of the conditional value at risk. This makes possible the use of BFGS algorithm.
Computation of the associated gradient requires the resolution of an inner optimization problem
for which we propose fast computational procedures.

We release an open-source python toolbox, SPQR [1], for the resolution of (2). It is built on
top of scikit-learn [3], the popular ease-to-use machine learning library. The documentation
is available at : https://yassine-laguel.github.io/spqr/.
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