
MIP and Set Covering approaches for Sparse Approximation

Diego Delle Donne1, Matthieu Kowalski2, Leo Liberti1
1 LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.

{delledonne,liberti}@lix.polytechnique.fr
2 Laboratoire des Signaux et Systèmes, UMR 8506 Univ Paris-Sud – CNRS – Centralesupelec,

91192 Gif-sur-Yvette Cedex, France
matthieu.kowalski@u-psud.fr

Keywords : sparse approximation, set covering, mixed integer programming.

1 Introduction

The sparse representation of a vector y ∈ Rn in a dictionary H ∈ Rn·m aims to find a solution
x ∈ Rm to the system Hx = y, having the minimum number of non-zero components, i.e.,
minimizing the so-called `0 pseudo norm of x, defined by ||x||0 := #{j | xj 6= 0}. The sparse
approximation problem takes into account noise and model errors, and it relaxes the equality
constraint aiming to minimize the misfit data measure ||y − Hx||, for a given norm || · ||. In
this context, several optimization problems my be stated such as:

1. minimize ||x||0 subject to a given threshold ||y −Hx|| ≤ α,

2. minimize the data misfit ||y −Hx|| subject to a given bound ||x||0 ≤ k,

3. minimize a weighted sum λ1||y −Hx||+ λ2||x||0 for some λ1, λ2 ∈ R.

In this work, we focus on the problem stated in Item 1 when the norm used for the data misfit
measure is the Euclidean p-norm, for p ∈ {1,∞}. Following the notation from [1], we define
these problems as

P0/p : min
x
||x||0 s. t. ||y −Hx||p ≤ αp.

Some natural mixed-integer programming (MIP) formulations for P0/1 and P0/∞ are introduced
in [1]. These models use decision variables xj ∈ R, for each j ∈ [m] to determine the solution
and binary support variables bj to state whether xj has a non-zero value or not. They require
to (artificially) bound |xj | with a value M in order to properly state the models. Then,∑

j∈[m] bj is minimized subject to appropriate constraints. We call these formulations MIP0/1
and MIP0/∞, respectively, and we omit to state them here due to space limitations. In [1],
these formulations are solved directly by CPLEX. As far as we know, no polyhedral studies
have been done for these formulations, with the goal of developing more powerful resolution
algorithms (e.g., cutting planes based ones).

In this context, we propose some families of valid inequalities for MIP0/1 and MIP0/∞ and
we test these families in a branch & cut scheme, in order to assess their practical contribution to
solve the problems. We also introduce a novel IP approach for P0/p which reduces the latter to
a minimum set covering problem (with exponentially many covering constraints). We propose
two resolution approaches: a 2-stages algorithm to tackle the IP resolution and a combinatorial
algorithm to solve the associated covering problem. In the remaining, for any natural number
t, we may use [t] as a shortcut for the set {1, . . . , t}.



2 New valid inequalities and a novel IP approach for P0/p

We say that a set of columns J ⊆ [m] is a forbidden support for P0/p if there exist no solutions
with J as support, i.e., if minx{||y −HJxJ ||p} > αp, where HJ (resp. xJ) is the submatrix of
H (resp. subvector of x) involving only those columns indexed by J .

Proposition 2.1. If J ⊆ [m] is a forbidden support for P0/p, then the forbidden support
inequality ∑

j∈[m]\J
bj ≥ 1 (1)

is valid for MIP0/p.

From Proposition 2.1, we derive some subfamilies of valid inequalities for which we developed
separation procedures (both exact and heuristics) and implemented a branch & cut algorithm
using them as cutting planes. We omit here all these elements due to space limitations. We
state next an interesting theoretical result about the forbidden support inequalities (1).

Proposition 2.2. The projection on the variables bj of all feasible solutions of formulation
MIP0/p can be described by the forbidden support inequalities (1) as

Pfs = {b ∈ {0, 1}m | b satisfies (1) for each forbidden support J ⊆ [m]}.

Proposition 2.2 lets us obtain a minimum support b̂ of a solution to P0/p by solving the following
integer programming (IP) formulation:

[IP cov
0/p ] b̂ = arg min

b∈{0,1}m

{ ∑
j∈[m]

bj |
∑

j∈[m]\J
bj ≥ 1, ∀ forbidden support J ⊆ [m]

}
We should remark that b̂ is not a solution for P0/p but just an optimal support. However,
a solution for this support can be easily obtained afterwards by solving a linear program.
Moreover, as the support is already fixed for this last step, there is no need to use the artificial
big-M bounds for x, fact that gives an important advantage against formulation MIP0/p.
Another interesting characteristic about IP cov

0/p is that it represents a minimum set covering
problem and this kind of problems have been widely studied in the literature.

A strong drawback of IP cov
0/p is that the formulation may have exponentially many constraints.

Furthermore, a linear program may be eventually need to be solved (in general) for each subset
J ⊆ [m] to check if J is a forbidden support or not. To address these obstacles we propose and
implement two approaches: a 2-stages algorithm to solve IP cov

0/p and a combinatorial algorithm
tailored for our covering problem (in which the “elements to cover” are exponentially many).

3 Final remarks
In this work we present some families of valid inequalities for known formulations for Sparse
Approximation problems and we test their potential in a branch & cut scheme. We also prove
that one of these families is sufficient to describe the support of all feasible solutions and from
this fact we re-state the problem as a set covering problem, thus opening many possible lines
of work to solve Sparse Approximation problems; we inspect some of them proposing two exact
algorithms. As an ongoing work, we are trying to complement our branch & cut algorithm for
MIP0/p by using some of the many valid inequalities known for set covering polytopes.
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