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1 Introduction
In the last years, the number of users of social networks such as Facebook, YouTube, and
Twitter rapidly increased (about 2.4 Billion users for Facebook, 1.9 billion for YouTube, and
330 million users of Twitter). In these social networks, people share and receive information,
advertisements, and ideas from friends or subscribers in “word-of-mouth" form of communica-
tion. From the users perspective, this provides to the users new and comfortable channels for
exchanging information and expressing views and opinions [2]. From the marketing perspec-
tive, this allows the social media to penetrate all aspects of everyday lives. In this context,
the study of influence propagation through a social network gained importance when deciding
whether or not to adopt an innovation (such as a political idea, a new product, or medical and
technological innovations).

In the literature, works studying the influence and effects of “word-of-mouth" in the pro-
motion of new products in social networks are motivated by applications like the spreading
of ideas or innovations in a network and viral marketing of products. Definitely, influence
maximization has become a relevant problem on social networks.

The Maximum influence problem in social networks consists of selecting a subset of seeds
(users of the network) to spreed information or ideas through given diffusion models, in order
to maximize the spread of influence in the network.

2 Problem description
We consider a signed social network, which can be modeled as an undirected signed graph
G = (V,E, s). The set of nodes V represents the individuals of the considered network. The
set of edges E represents polarized relationships among individuals such as trust and distrust
relationship, each edge {i, j} ∈ E in the graph is associated with a positive or a negative signs
according to the type of relationship between individuals i and j.

We suppose the existence of an information to be spread in the network which can take two
opposite states in {I0, I1}. Ideally, the owner of the information wants it to be spread at state
I0 to each node (individual) in the graph (social network).

The information can be sent at state I0, from the owner, to a node i ∈ V at a sending cost
fi; in this case i is called a seed (i.e. an individual in charge of diffusing the initial information
from the owner). A penalization Ci is defined for each node i receiving the information at state
I1, i.e. the reverse of the one initially sent by the owner.

A value dij is associated with each edge {i, j} ∈ E. Assuming i (respectively, j) receives
the information at a time t0, then j (respectively, i) receives the information at time t0 + dij

through edge {i, j}. A negative edge {i, j} ∈ E− means the information inverts as it flows on
the edge, while it keeps its state whenever {i, j} ∈ E+.

Maximum influence problems amount to select a subset of nodes S ⊆ V in the network
(seeds) to diffuse a given information to each node i ∈ V \ S that minimizes the associated



sending and penalization costs for all nodes in V . Once the set of seeds S is defined, the
information retained by each non-seed node i ∈ V \ S is the first information arriving to this
node, i.e., the information retained arrives through a shortest path linking a seed j ∈ S to
i. This assumption is motivated by many psychology and marketing researches which prove
the effect of the first impression on decision making, this called the “Halo effect" for positive
impressions and “Horn effect" for negative ones.

The bi-level model, presented in following, selects at the first level the set of seed nodes
which will receive the information directly from the owner. The second level computes the
shortest paths connecting each node to the selected seed.
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The objective function of the leader (1a) minimizes the sum of sending costs associated with
the selected seeds and penalty costs associated with non-seed nodes. Constraints (1b) allows
node i to receive information through a path beginning at node k only if k is selected as a seed
node. The variable πk defined by constraint (1c) is a binary variable which represents the state
of the information arriving to the node k according to the number of negative arcs in the path
of k (1 for shifted information and 0 for the original one).

Constraints (1e) and (1f) force each non-seed node to receive an information from exactly
one seed. Constraints (1g) force variables yk to be equal to 0 whenever node k is a seed.

The second level problem is a shortest path problem between all pairs of nodes. We solve
the above problem exactly by reformulating it as a one-level MILP using three different types
of optimality conditions [1]: KKT optimality conditions, Bellman’s optimality conditions, and
inequalities eliminating unfeasible paths.

These formulations have been strengthened by adding a set of valid inequalities. In addition,
preprocessing and polynomial time solution were proposed for particular cases of networks.
Computational experiments are performed using random instances to compare the different
proposed formulations. The obtained results showed the efficiency of the formulation based on
Bellman’s optimality condition over the other formulations for the majority of the instances.
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