
Decycling Information Networks

Jean-François Baffier1, Benjamin Renoust2

1 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
jf@baffier.fr

2 Osaka University Institute for Datability Science, Osaka, Japan
renoust@ids.osaka-u.ac.jp

Mots-clés : information-networks, decycling, multilayer, flow

Extended abstract
Graphs are simple objects, a set of vertices, and a set of links between those, that represent

a wide variety of problems. Among the different categories of graphs, some allow a faster com-
putation of many algorithms. A directed acyclic graph (DAG) is a graph where the links are
directed (called arcs) and where no directed cycle exists. This structure often allows a faster
computation, or even the existence, of various graphs algorithms. A strongly connected com-
ponent of a directed graph is a subgraph where a directed path exists between any ordered pair
of vertices (not necessarily distinct) in the component. Any directed graph can be decomposed
in linear time into a DAG of its strongly connected components (of maximum possible size).

In our previous work on the flow of knowledge in information networks [1, 2], we designed an
ascending flow framework to evaluate the influence of the different nodes in the transmission
of information. As each node produces and most often receives some information, that flow
framework was naturally designed for DAGs, to avoid the measure of information produced
to cycle back to the node that produced it. In both that previous work and this one, we used
the case of an academic publication network to evaluate our framework. In particular, we used
a subgraph of the arXiv preprint network in the High-Energy Theoretical Physic. Preprint
networks have the remarkable property that each article can be updated over time. We call
versioning this process that allows, among others, the production of new knowledge and the
update of the references. Hence cycles may appear over time. Of course, cycles exist in other
networks of information such as news networks, or social networks.

This work provides different methods to decycle a graph while conserving the flow of infor-
mation in the network (a graph with nodes that generate and transmit information). To decycle
such networks, we apply our methods sequentially to each strongly connected component. We
introduce the fundamental concepts of this work with classical graphs, but it can be easily
extended to most of the more complex networks such as multiplex networks or temporal net-
works. We also address the fairness issue coming from versioning. That is how to evaluate the
amount of information brought by each new version.

A simple and natural method, which we call here deletion-decycling, to avoid cycles is to
delete some of the links in each connected component till all cycle ceases to exist. One might
choose the links randomly or delete them according to some order (time, for instance). This
operation reduced the size of the network. However, the question of fairness raises, as it is chal-
lenging to evaluate its impact on the transmission of information. Some previously connected
nodes might even be disconnected in the process.

More complex methods require to add some elements to the networks. In the following
methods, we differentiate each vertex v into an in-vertex vin and an out-vertex vout. The
information brought to v from outside the strongly connected component is transmitted to vin.
The information sent by v outside the strongly connected component is now sent by vout. A
set of auxiliary vertices is present in between all in-vertices and out-vertices of the component.



This set serves to the decycling process. Note that all the vertices and links replacing the
component form a DAG. Finally, we need now to set up the production of knowledge to be
only on the in-vertices of each component. The measure of each vertex influence is the value
transmitted by the corresponding out-vertex.

Another natural method is to consider that nodes in the same strongly connected component
cannot be differentiated in their production of information. We call contraction-decycling this
method. The decycling operation is as simple as having a central auxiliary vertex where each
in-vertex is pointing at and that points to each out-vertex. This approach is not expensive to
compute and conserve some fairness for small and dense strongly connected components.

The most significant contribution of this work is the path-decycling method. It consists of
expanding the component into a DAG reproducing all possible non-cycling paths existing in
the component. In our academic network, suppose we have a very simple case of a component
made of two articles, a1 and a2, citing each other. We would expand the component into the
in and out-vertices, ain

1 , ain
2 , aout

1 , aout
2 , and the auxiliary vertices a{1}, a{1,2}, a{2}, a{2,1}. Where

the vertex a{1,2} incarnates being on the any path starting by the path {1, 2}. At each step on
that path p, if the vertex v has a link going out of the component, then v{p} has an out-going
arc connected to vout.

This latter method is accurate but suffers an exponential growth in the size of the strongly
connected component. Experiments on a complete strongly connected component show a size
limit of about 10.

To complete the theoretical and practical analysis of our decycling methods, we introduce the
notion of pseudo-DAG (PDAG). A k-PDAG is a graph with strongly connected components of
at most k elements. Intuitively, for a given reasonably small k, a k-PDAG allows the following
improvements on the different decycling methods. Both deletion-decycling and contraction-
decycling should show an improvement in accuracy and be more fair. The exact but exponential
(in time and space) path-decycling method has a theoretical guarantee to run in a reasonable
time – in terms of complexity, this method is FPT.

We will confirm those results by practical experiments on various networks, including the
arXiv subgraph mentioned above, that possesses a strongly connected component of about 7000
articles. Note that several measures defined in [2] are multiplex, which allows our experiments
to be on simple and more complex networks.

Finally, based on the analysis in [2], we propose a bounded version to the path-decycling
method that we call partial path-decycling (PPD). The main idea behind this approach is that
the amount of information, or knowledge, decreases at each step. The contribution to the flow
of knowledge of a given node after a few steps should be neglectable. Thus it can be bounded
with few changes to the expected result. We refer to a PPD bounded by s steps as s-PPD.

We evaluate the accuracy and speed improvements of s-PPD on k-PDAG for k ∈ {3, 10} and
s ∈ {1, k}. We also evaluate the computation time on graphs with long cycles and showcase
some use-cases on academic networks.

We provided a method to decycle graphs, efficiently for PDAG, and that balance accuracy
and efficiency for more massive graphs. We expect PPD (and its bounded versions) to be of
theoretical and practical interest to the community to measure various flows of knowledge and
influences in different information networks. All the data and algorithms will be available as
an open-source library online.

Références
[1] Benjamin Renoust, Vivek Claver, and Jean-François Baffier. Flows of knowledge in citation

networks. In Hocine Cherifi, Sabrina Gaito, Walter Quattrociocchi, and Alessandra Sala,
editors, Complex Networks & Their Applications V, pages 159–170, Cham, 2017. Springer
International Publishing.

[2] Benjamin Renoust, Vivek Claver, and Jean-François Baffier. Multiplex flows in citation
networks. Applied Network Science, 2(1) :23, Jul 2017.


