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1 Introduction
The TSP is the problem of finding a single cycle going through all the vertices of a graph such
that the sum of the costs of the edges it contains is minimal. It has many applications and
has been motivated by concrete problems, such as school bus routes, logistics, routing, etc. It
is solved in CP with the WCC [2] and the k-cutset constraint [4]. The TSP can also be solved
by the MIP dedicated solver Concorde [1] which uses an LP model in combination with the
cutting-plane method. The CP and MIP use structural constraints for their solving. In this
article, we show that the formulations look very different but they are in fact very similar.

2 The k-cutsets
Given G = (X, O, M) a graph where X is a vertex set and O and M are two disjoint set
representing optional and mandatory edges. In CP, we solve the problem consisting in finding
a Hamiltonian cycle in G going through all the edges of M with the structural constraint
of k-cutsets. This allows to delete some edges from O and add some edges to M. If there
is a Hamiltonian cycle in G then for any K, a S-T cut of the graph G of cardinality k (i.e.
X = S + T and S ∩ T = ∅ and K contains all the edges having one endpoint in S and one in
T ), then each of the TSP (G) solutions takes an even and strictly positive number of K edges.

Thus, filtering rules can be deduced. If k is odd and K contains only mandatory edges then
there is no solution. Otherwise, if k = 2 then both edges of K become mandatory, if k is odd
with k− 1 mandatory edges then the optional edge of K is removed and if k is even with k− 1
mandatory edges then the optional edge of K becomes mandatory.

An example is given in the following Figure where solid lines are the edges of M and dotted
lines are the edges of O. Given K = {(D, C), (E, F ), (A, B)}. In the left graph, K has a
cardinality 3 and have 2 mandatory edges {(D, C), (A, B)}, so (E, F ) can be removed. In the
right graph, K has a cardinality 3 and have 3 mandatory edges, then there is no solution.
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3 Comb inequalities
As stated in [3] : "A comb is defined by giving several subsets of nodes of the graph: We
need one nonempty handle H ⊆ V , H 6= V and 2k + 1 pairwise disjoint, nonempty teeth
T1, T2, ..., T2k+1 ⊆ V. for k at least 1. (So the number of teeth is odd and at least 3.) We also
require each tooth to have at least one node in common with the handle and at least one node
that is not in the handle."



The following cutting-plane is used in Concorde is based on the Comb inequality 1.
∑

e∈U(H)
xe +

2k+1∑
i=1

x(Ti)) ≤ |H|+ k (1)

An example is given in the following Figure. We note in 2 and 3 the solid lines = 1 and
the dotted lines = 1/2 as a solution of the LP. The Comb inequality 1 is violated because
3+3 ≤ 3+1 is wrong, therefore the cutting-plane

∑
e∈U(H) xe +

∑2k+1
i=1 x(Ti)) ≤ 4 is generated.
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4 Relationship
We show an original relationship between k-cutsets and Comb’s inequalities.

LP generates a non-integer solution that is a lower bound of the TSP and looks for some
S-T cuts in it such that the number of edges is odd, then the S-T cut is prohibited by the
Comb inequality. Thus, the lower bound is potentially improved at each iteration.

CP removes edges from the graph, makes edges mandatory and looks in the current graph
for all S-T cuts of size k = 2, 3 and apply filtering rules of the k-cutset.

Thus, the strategy of the LP is to look for some S-T cuts for generating cutting-plane, the
strategy of the CP is to look for all S-T cuts where the cardinality of the cutset is 2 or 3.
A very important remark is that finding all Comb inequalities is NP-Complete and finding
k-cutsets for any k is NP-Complete. Each of the specific usages can be explained by the fact
that the LP does not remove edges of the graph, so it will tend to have rather large cuts, the
CP very quickly removes a large part of the edges of the graph, and will therefore have smaller
cuts. Our experiments show that is rather hard to increase the size of k and having good
computation times because of the complexity of the algorithm.

Experiments show in [1] that Comb’s inequalities are essential for strong performance. Ex-
periments show in [4] that k-cutsets allow to obtain gains of a factor 2. This experimentally
confirms the importance of this type of cut for the resolution of TSP, beyond the method used.

To conclude, using the graph structure allows Concorde to become the best MIP solver for
the TSP, similarly the k-cutset constraint leads to the best CP model for solving the TSP.
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