
Learning to Price :
Structured Learning to scale up Column Generation

Axel Parmentier
Ecole des Ponts Paristech, France, axel.parmentier@enpc.fr

Mots-clés : Column Generation, Stochastic Vehicle Scheduling Problem, Machine learning
for Operations Research, Structured learning, Path problems, Flow problems

In the past few years, machine learning (ML) techniques have become increasingly popular to
speed-up the resolution of operations research (OR) problems. Consider a generic optimization
problem

min
x∈X (Γ)

f(x; Γ),

where Γ is an instance of the problem, X (Γ) is the set of feasible solutions of Γ, and x 7→ f(x; Γ)
the objective function of Γ. In contract with the current practice, we mention the instance Γ
explicitely because machine learning schemes typically consider a set of instances to extract
informations that are relevant for any instances of the problem and not just the instance
concerned. Figure 1.a illustrates the general scheme of algorithms that exploit ML techniques to
solve OR problems : First, an ML predictor φθ extracts relevant information φθ(Γ) on instance
Γ, and second an optimization algorithm A uses this information to solve the problem. The
ML predictor φθ belongs to a family (φθ)θ∈Θ, and the objective of the learning algorithm is to
find the parameter θ in Θ that leads to the best performance of the algorithm A on the set of
instances of interest.

The different methodologies identified by Bengio et al. [1] in their survey differ by the kind
of ML predictor φθ and algorithm A they use. For instance, end-to-end learning approaches
use a deep neural network as φθ and a simple greedy heuristic as A, while other approaches use
a simple features based ML predictor φθ to find a good parametrization φθ(Γ) of an advanced
combinatorial optimization solver A. In this work, we consider the following situation, that we
have frequently encountered in the practice of OR. We want to solve large instances of a hard
problem

min
x∈X h(Γh)

fh(x; Γh), (h)

and we have an algorithm Ah that can solve only moderate size instances of our problem. But
our hard problem is a variant of an “easy” problem

min
x∈X e(Γe)

f e(x; Γe), (e)

that is, a problem for which we know an efficient solution algorithm Ae that can handle large
instances. Let ℵh and ℵe be the set of instances of the hard and the easy problem, respectively.

a.
InstanceΓ

Information
φθ(Γ)

Solution x ∈ X (Γ)
x = A(φθ(Γ),Γ)

φθ

ML predictor
A

Algorithm

b.

Instance
Γh ∈ ℵh

Instance Γe ∈ ℵe

Γe = φθ(Γh)
X (Γe) ⊆ X (Γh)

Solution x ∈ X (Γh)
x = Ae(φθ(Γh))

φθ

ML
Ae

Alg.

FIG. 1 – a. General scheme of ML algorithm for OR problems. b. the paradigm we propose



Our first contribution is a novel “ML for OR” paradigm that uses the moderately efficient
algorithm Ah to learn a practically efficient heuristic for hard problem of interest (h). It is
illustrated on Figure 1.b and can be described as follows. First, we use an ML predictor
φθ : ℵh → ℵe to turn our instance Γh of the hard problem into an instance Γe of the easy
problem (e) such that the set of feasible solution X e(Γe) is contained in the set of feasible
solution X h(Γh). Then, we use the efficient algorithm Ae to find a solution x in X e(Γe), and
return it as the solution of our instance Γh of the hard problem. The main question that must
be answered to make this approach work is the following : How to choose θ in such a way that
Ae applied on φθ(Γh) provides a good solution of Γh ?

Our second contribution is methodology to answer that question. Given a sample of moderate
size instances of (h), we use algorithm Ah to compute the solution of these instances. We then
show that the problem of learning θ can then be seen as a structured learning problem [3].
Structured learning is a branch of machine learning that approximates functions t = h(s)
where t is in a combinatorially large space T (s) as follows : Given a new s, it solves an
auxiliary inference problem

min
t∈T (s)

gθ(s, t),

and returns an optimal t as the predicted value of h(s). In our case, s is an instance Γh of the
hard problem (h), h(s) is an optimal solution of Γh, and our auxiliary inference problem is the
easy problem (e) on instance φθ(Γh). Having framed the choice of θ as a structured learning
problem, we can use a probabilistic learning approach [3, Chapter 5] to learn θ.

Structured learning requires ad-hoc learning algorithms for each kind of auxiliary inference
problem – of easy problem (e) in our application. We demonstrate the relevance of our ap-
proach using two of the most common OR problems as easy problems (e) : the usual shortest
path problems and and the flow problem, both on acyclic digraphs. To the best of our know-
ledge, neither of these have ever been considered as auxiliary inference problems in structured
learning. Our third contribution is a probabilistic learning approach to handle them. Our pa-
radigm and algorithms therefore provide a direct method to approximate any path problem
by a usual shortest path problem, and any path partition problem by a flow problem. We also
provide matheuristics that exploit our approximations by usual shortest path problems as an
approximate pricers in a column generation scheme, and can thus deal with any problem that
can be solved by a column generation whose pricing subproblem is a path problem.

We demonstrate the efficiency of our approach with the stochastic vehicle scheduling problem
(VSP) as hard problem (h). Given a set of tasks with fixed beginning and ending time, the VSP
aims at finding the sequences of tasks operated by some vehicles so as to operate all these tasks
at minimum cost. In its stochastic version, which has notably applications to airline operations
[2], tasks may be delayed, vehicles propagate delay, and propagated delay cost is minimized.
The deterministic VSP is easy to solve with a flow approach, while the stochastic VSP is (not
so well) solved using column generation. The flow based and column generation heuristics we
get using our paradigm are more than three order of magnitude faster than the algorithm Ah

we used to train them, and can handle instances with several thousand tasks when Ah could
only solve instances with at most 50 tasks.

Références
[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial

optimization : a methodological tour d’horizon. arXiv preprint arXiv :1811.06128, 2018.
[2] Shan Lan, John-Paul Clarke, and Cynthia Barnhart. Planning for robust airline operations :

Optimizing aircraft routings and flight departure times to minimize passenger disruptions.
Transportation Science, 40(1) :15–28, 2006.

[3] Sebastian Nowozin, Christoph H Lampert, et al. Structured learning and prediction in
computer vision. Foundations and Trends R© in Computer Graphics and Vision, 6(3–4) :185–
365, 2011.


