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1 Introduction
In this project we propose an algorithm for the solution of the following problem :

min
x,y

f(x, y) (1a)

xlb ≤ x ≤ xub, ylb ≤ y ≤ yub (1b)
x ∈ Rn1 , y ∈ Zn2 (1c)

where f : [Rn1 ×Zn2 ] −→ R is a mixed-integer black-box function which exhibits combinatorial
properties at fixed values of x. Black-box are often expensive-to-evaluate and do not present
analytical form, which means that no gradient nor second-order information can be used to
optimize them. Black-box functions arise in several settings, such medical imaging, operations
research, and, specially in computer simulation programs. Several methodologies have been
developed to solve black-box instances including heuristics (i.e evolutionary algorithms, tabu
search) and derivative-free optimization (DFO) methods. Within DFOs, surrogate-based ap-
proaches appear to be successful in the computation of local and global solution of black-box
optimization programs.

Surrogate-based methods consist in the computation of a (surrogate) model which approxi-
mates the black-box function, via regression or interpolation. Different types of models can be
use to approximate a black-box function, including low-order polynomials, radial basis func-
tions (RBF) and kriging. To the extent of our knowledge, none of these approximations have
been studied for mixed-integer functions with special combinatorial properties on their integer
elements.

One example of such problems is the mixed-integer generalization of M \ discrete functions
[1]. M \ are integrally convex functions that display interesting properties such as supermo-
dularity, descent directions and minimizers. We aim to develop interpolants which can mimic
this behavior, in order to improve the approximation of structured functions, and reduce the
number of iterations on the optimization of black-box problems.

2 Algorithm Structure
Our proposed algorithm is designed to solve problem (1) via surrogate optimization. This

is done by a three phase methodology which aims to approximate the mixed-integer func-
tion f(x, y) with a suitable quadratic interpolant Qk, which exhibits combinatorial properties.
Phase 1 consist on the initial sampling, Phase 2 considers the computation of the surrogate
model and geometry handling, and Phase 3 is the computation of a new candidate solution
via a special procedure derived from the difference of convex algorithm (DCA) [2]. Phase 2
and Phase 3 are repeated until algorithmic convergence is detected.



2.1 Phase 1 : Initial sampling
To compute an initial interpolant a design of experiments is performed, consisting in the

evaluation of f(x, y) on at least 2n+ 1 independent points, where n is the number of variables
in the system. To assure a proper spanning of domf we use a "Latin Hypercube design" with
emphasis on a maximum/minimum correlation of samples.

2.2 Phase 2 : Model approximation
The quadratic approximation of f(x, y) is the following :

Qk(x, y) = c+ gT
Cx+ gT
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TAIy + yTAMx (2)

where c is a constant term, gC and gI are linear coefficients, the interaction matrix AM and
the symmetric matrices AI and AC . All this coefficients are computed via regression using an
adequate disjunctive formulation, devised to provide the matrix AI with a combinatorial struc-
ture. To improve the quality of the approximation, a geometry handling procedure is activated
when the number of sampling points reach a threshold. This procedure retires elements from
regression based on criteria such value of the sampled objective or distance to the current best
solution.

2.3 Phase 3 : Candidate computation
A new candidate is computed by solving the surrogate model inside a trust-region, cente-

red in the best known solution. The chosen trust-region consider independent box-constrains,
specially tailored for a mixed-integer domain. The trust-region is continuously updated based
on the balance improvement of the objective function, and the quality of the regression. The
algorithmic termination is reached when the trust-region radius is smaller than a user provided
tolerance ε.

The solution procedure exploits the combinatorial properties of matrix AI and performs
a separation of integer and continuous variables. This methodology is well suited for cases
when the relaxation of Qk is convex and can be adapted via regularization to solve non-convex
instances. Although it was originally developed as an local optimization technique, it provides
high quality solutions when used as part of a multistart procedure. Numerical tests on quadratic
mixed-integer M \ instances show this methodology is faster to compute feasible, even optimal,
solutions compared to available commercial solvers.
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