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We consider a set of n tasks J that have to be processed non-preemptively on a single machine
around a common due-date d. Given for each task j∈J a processing time pj and a unitary earli-
ness (resp. tardiness) penalty αj (resp. βj), the problem denoted 1 | |

∑
αj [d−Cj ]++βj [Cj−d]+,

aims at finding a feasible schedule that minimizes the sum of earliness-tardiness penalties.
We assume that the due date is unrestrictive, i.e. d≥

∑
pj . The problem is NP-hard [3].,

even if the penalties are symmetric, i.e. if αj =βj for all j∈J . For the latter case, a dynamic
programming algorithm is proposed in [3]. For arbitrary penalties, a heuristic method together
with a benchmark is provided in [1]. These instances are efficiently solved by an exact method
proposed in [4]. Our work also deals with arbitrary penalties, but for sake of brevity, we assume
that the α-ratios αj/pj for j∈J are different, as well as the β-ratios βj/pj .

1 A compact linear formulation
In a given schedule, a task is early (resp. tardy), if it completes before or at d (resp. after

d), and a task is on-time if it completes exactly at time d. A schedule having an on-time
task is said V-shaped, if early (resp. tardy) tasks are ordered by increasing α-ratios (resp.
decreasing β-ratios). A schedule without idle time is called a block.

From [3], it is known that there exists an optimal solution which is a V-shaped block having
an on-time task. Using this dominance property, we only consider this kind of schedules, which
can be completely described by the partition between early and tardy tasks. Indeed, if the set
of early tasks E is given, the set of tardy tasks T = J \ E is also fixed, and the earliness eu
(resp. the tardiness tu) of any task u∈J , can be deduced as follows :

eu=
{
p
(
A(u) ∩ E

)
if u∈E

0 otherwise tu=
{
p
(
B(u)∩T

)
if u∈T

0 otherwise

where p(S)=
∑
j∈S

pj for any S⊆J , A(u)=
{
j∈J | αj

pj
> αu

pu

}
and B(u)=

{
j∈J | βj

pj
> βu

pu

}
.

Note that, for each task u, the sets A(u) and B(u) can be pre-computed since they are defined
from the instance parameters. We also define Ā(u)=J\

(
A(u)∪{u}

)
and B̄(u)=J\

(
B(u)∪{u}

)
.

We proposed in [2] a compact integer linear model based on n boolean variables indicating
if task j is early. i.e. on a vector δ ∈ {0, 1}J encoding the partition

(
E = {j∈J | δj =1},

T ={j∈J | δj =0}
)
. This formulation, called (F ), has a total of n+n(n−1)/2 boolean variables

and 4n(n−1)/2 inequalities. We propose in the next section a way to improve it.

2 Inequalities for neighborhood based dominance properties
It is common, in local search procedures, to slightly change a solution S to obtain a new one
S ′, called a neighbor of S. If the neighbor S ′ is better, (i.e. if it has a smaller total penalty
in our case), we say that S is dominated (by S ′), it follows that S cannot be optimal.
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FIG. 1 – Insertion of an early task u on the tardy side of a schedule

This simple observation leads to a dominance property for any neighborhood N which
associates to a solution a set of neighbors. A solution S is said N -dominated if there exists
S ′∈N (S) which is strictly better than S. Hence the solutions which are not N -dominated are
dominant. In our work, as a schedule is encoded by a partition (E, T ) between early and tardy
tasks, we consider two kinds of operations providing a neighbor (E′, T ′) :

- the insertion operation, which consists in inserting an early task on the tardy side of
the schedule, i.e. E′=E\{u} and T ′=T∪{u} for some u∈E (see Figure 1), or conversely
in inserting a tardy task on the early side i.e. E′=E∪{u} and T ′=T\{u} for some u∈T ,

- the swap operation, which consists in inserting an early task on the tardy side of the
schedule, while a tardy task is inserted on the early side i.e. E′ = E \{u}∪{v} and
T ′=T \{v}∪{u} for some (u, v)∈E×T .

For each of these operations, we propose a linear inequality translating the associated
dominance, which means that this inequality cuts exactly all schedules which are dominated
by their neighbor obtained by the above mentioned operation. For example, for the insertion
of a task u∈J on the tardy side, the inequality proposed cuts all schedules in which u is early
and which are dominated by the schedule obtained by inserting u on the tardy side, but is valid
for any other schedule, in particular for all optimal schedules since they are non-dominated.

Note that these inequalities, called insert and swap inequalities, are not standard rein-
forcement inequalities. Classically, valid inequalities are added to cut extreme points which
are not integer and then do not encode a feasible solution. On the contrary, these dominance
inequalities cut integer points encoding feasible solutions because they correspond to domi-
nated, and then non-optimal, schedules. By adding these inequality to (F ), we obtain a new
formulation (F ′) for our problem.

To assess the computational advantage of adding insert and swap inequalities to the compact
formulation, we implement (F ) and (F ′) using a linear solver (CPLEX version 12.6.3.0), and
test them on the benchmark proposed by [1]. Under a time limit of one hour, formulation (F )
using all CPLEX features allows to exactly solve instances up to 50 tasks, while formulation
(F ′) without any CPLEX feature allows to exactly solve instances up to 150 tasks.
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