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1 Introduction

In this work, we consider the min-max-min problem formalized as

min
yk∈Y,k∈[K]

max
ξ∈Ξ

min
k∈[K]

g(yk, ξ) (1)

where [K] = {1, . . . , K}, Ξ ⊆ Rn is a polyhedral set, g : Y × Ξ → R is a function concave
in ξ ∈ Ξ, and Y ⊆ Zn is a finite set. Problem (1) models the situation where the decision
maker can prepare the ground for K recourse solutions and choose the best of them upon
full knowledge of the uncertain parameters. For instance, if Y contains paths from s to t in a
given graph, (1) seeks to prepare K different routes that can be used to evacuate citizens or
transport relief supplies in case of a hazardous event [5]. In this work, we propose an extended
formulation for the min-max-min problem described in (1) and propose a solution method
based on decomposition.

2 Literature review

While several studies (e.g., [5, 6]) have illustrated the practical relevance of problem (1),
exact solution algorithms have stayed behind. Two general algorithms have been proposed : [5]
reformulates the problem through a Mixed-Integer Linear Programming (MILP) formulation
involving big-M , and [6] introduces an ad-hoc branch-and-bound algorithm based on generating
a relevant subset of scenarios Ξ′ ⊆ Ξ and enumerating over their assignment to the K solutions.
Unfortunately, these two approaches can hardly solve the shortest path instances proposed
by [5] with more than 25 nodes. The approach proposed in [3] had more success with these
instances, solving all of them to optimality (up to 50 nodes) in the special case K = 2. Yet this
latter approach requires g to be linear, Ξ to have a special structure and does not scale up with
K. The purpose of this work is to propose a more general algorithm for solving problem (1)
to near optimality. To this end, we model problem (1) as a variant of the p-center problem,
assigning a relevant subset of scenarios to at most K different solutions from Y . We solve
the resulting problem by combining a row-and-column generation algorithm, binary search,
preprocessing and efficient dominance rules.



3 Methodological development and algorithms
We first propose an extended formulation for a relaxation of problem (1). To this end,

let Y = {y1, . . . , yr} and Ξ′ = {ξ1, . . . , ξt} ⊂ Ξ. We use the notation [r] = {1, . . . , r} and
[t] = {1, . . . , t}. We introduce binary variables us and vsj for s ∈ [r] and j ∈ [t], the former
being equal 1 if and only if solution s is used, while the latter takes value 1 if and only if
solution s is assigned to scenario j. We then write,

min ω (2a)
s.t. ω ≥

∑
s∈[r]

g(ys, ξj)vsj , ∀j ∈ [t] (2b)

∑
s∈[r]

vsj = 1, ∀j ∈ [t] (2c)

∑
s∈[r]

us ≤ k, (2d)

vsj ≤ us, ∀j ∈ [t], s ∈ [r] (2e)
u, v ≥ 0 integer. (2f)

This formulation is equivalent to the vertex p−center problem, that can be efficiently solved to
optimality using binary search, coupled with a covering formulation and dominance rules [4].

We next present a row-and-column generation approach based on (2), where at each iteration
relevant scenarios are added to this relaxation. To do so, let the optimal solution of (2) be
given by (ω∗, ū, v̄). Then a separation problem can be written as

z∗ = max −
∑
s∈[r]

ūsπs + γ

s.t. ξ ∈ Ξ
− πs + γ ≤ g(ys, ξ), s ∈ [r]
π ≥ 0.

Let the optimal value of this separation problem be denoted by z∗. If z∗ ≥ ω∗ a scenario will
be added to the formulation (2) by generating a new variable vsj and a new constraint (2b).
Otherwise, the optimal solution to (1) is found.

Numerical results showing the promise of this approach compared to the MILP approach of
[5] will be presented.
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