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1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is one of the most im-
portant problems arising in the energy industry [1]. The basic physical quantity in electro-
magnetism is the charge. The electromagnetic field is the force vector acting on a unit charge
at each point of a the three-dimensional domain. The current I measures the rate of charge
traversal of a surface unit per second. The voltage V is the potential energy of a unit charge
in the electromagnetic field. The power S is the product of current and voltage. The power
induced on a line by the voltage difference at the line endpoints varies with time because of the
alternating nature of the power generation process. Since studying power as a periodic function
of time would be impossibly CPU-intentive, averages of the power power function over time
periods are considered instead. The ACOPF is usually cast as a Mathematical Programming
(MP) problem over the complex numbers: the imaginary part provides an average over time
of an orthogonal power function.

The ACOPF asks for the best power flow over an electrical network modelled by a digraph
N = (B, L), where B is the set of buses (nodes) and L the set of lines (arcs). We also in-
troduce a set G of generators installed at buses: potentially, any number of generators may
be installed at a given bus. The standard ACOPF can be reformulated as a (larger) MP
over the reals by separating real and complex parts [4]. The ACOPF is NP-hard [2]. While
objective functions vary in the literature, it is common to consider linear or quadratic objec-
tives with respect to power. While the ACOPF only has continuous variables, more realistic
variants include binary variables which activate/deactivate various electrical components [3].
The activation/deactivation of generators defines an ACOPF variant called ACOPF with
Generators (ACOPFG) [5]

The ACOPF poses formidable modelling difficulties, partly because of the complex number
setting, and partly because of the data representation chosen by electrical engineers. The
open-source academic software reference, which provides a data format, modelling platform,
and solvers, is MatPower [6]. MatPower has numerous qualities, but it does not come
across as “easy to use” by OR researchers and practitioners. In this talk we discuss some of
the ACOPF modelling difficulties and how to address them.

2 The asymmetric nature of transformer-endowed lines

We recall some complex number notation: any x ∈ C can be represented by separating real
and imaginary parts as x = xr + ixc, where i =

√
−1. Its complex conjugate is x∗ = xr − ixc;

its modulus is |x| =
√

xx∗; its phase is ϑx = arccos(xr/|x|) = arcsin(xc/|x|).
The foremost difficulty OR-educated people meet when modelling the ACOPF is possibly

the presentation of the data related to the network N . A line between buses b and a is an
abstraction of an electrical cable. Since AC electricity has a frequency of 50-60Hz, power is
induced on the line at b but also at a, depending on the oscillations of voltage at b, a. Thus the



line is represented by pairs of antiparallel arcs (b, a) and (a, b) (there may also be parallel lines,
representing parallel cables, which we do not deal with here). The main issue of modelling
the ACOPF stems from the fact that, unlike with DC, the generalization of Ohm’s law yields
different current magnitudes on the line according to the direction. We define decision variable
vectors Iba = (Iba, Iab) ∈ C2 for current on the line, and Vba = (Vb, Va) ∈ C2 for voltage at the
line endpoints, as well as a constant 2× 2 complex matrix Yba [1, Fig. B.1]. Then Ohm’s law
for the line between b and a is Iba = YbaVba.

Decision variables Sba ∈ C denote the power injected on the line at b, and are subject to
Sba = VbIba

∗. Other decision variables Sg, for g being a generator in Gb, which is the set of
generators assigned to bus B, denote the power generated at g. The main equations regulating
the power flow are Kirchhoff’s laws:

∀b ∈ B
∑

(b,a)∈L

Sba + S̃b = −Ab
∗|Vb|2 +

∑
g∈Gb

Sg, (1)

where Ab is a constant related to interaction with the ground, and S̃b is the power demand at
bus b. The formulation is completed by bound constraints: on generated power S , on injected
power magnitude |Sba|, and on voltage magnitude |Vb| (bounds on voltage phase difference,
not treated here, may also be enforced).

Usually, Sba is replaced by VbIba
∗, and Iba by YbaVba, which gives a voltage-only formulation.

This replacement, however, also yields an indexing problem: it lets us obtain injected powers
in antiparallel pairs Sba, Sab, but S appears in Eq. (1) in cutsets around {b}, making the
replacement technically challenging. This can be addressed by rewriting Eq. (1) as follows:

∀b ∈ B
∑

(b,a)∈L0

Sba +
∑

(b,a)∈L1

Sba + S̃b = −Ab
∗|Vb|2 +

∑
g∈Gb

Sg, (2)

where L0∪L1 = L and (b, a) ∈ L0 ↔ (a, b) ∈ L1. We then assume that all of the lines between
b, a with transformers at b are in L0. Then Sba = VbIab

∗ for each (b, a) ∈ L1.
By separating real and imaginary parts, and assuming a linear objective in generated power,

a complex ACOPF formulation can be reduced to a voltage-only Quadratically Constrained
Quadratic Program, which can be locally solved using some local Nonlinear Programming
solvers (satisfactory results were obtained using Baron limited to preprocessing).
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