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1 Introduction
In this paper we propose a new random projection method that allows to reduce the number

of inequalities of a Linear Program (LP). More precisely, we randomly aggregate the constraints
of a LP into a new one with much fewer constraints, while preserving, approximatively, the
value of the LP. This extends the work in [4], where the authors considered an LP with equality
constraints and proved that we can build a new LP, whose value approximate the original one,
with much fewer constraints by randomly aggregating them using a matrix of independent and
identically distributed (iid) random variables. The results obtained where derived from the
Johnson-Lindenstrauss Lemma [1, 2], which states that a set of high-dimensional points can be
projected to a much lower dimensional one, while preserving, approximatively, the Euclidean
distance between these points. The extension, to the inequality case, proposed in this paper is
non-trivial as we need to consider random matrices with non-negative entries.

2 Random matrices applied to LP
Random matrices are matrices T ∈ Rk×m whose entries a drawn from a probability distri-

bution. When the underlying distribution is properly chosen, these matrices can have some
very interesting properties : the Johnson-Lindenstrauss Lemma (JLL), [1, 2], states that, if
the entries of T are drawn independently from the standard normal distribution, N (0, 1

k ), it
is possible to project a set of n points of Rm into a space of dimension k = O( log(n)

ε2 ) while
preserving approximately (with “ε precision"), with arbitrarily high probability (w.a.h.p.), the
Euclidean distance between these points.
Recently, this result has been exploited, [4], to prove that equality constraints of an LP written
in standard form, could be randomly aggregated, using a random matrix T with k < m, into
a new LP : 

min
x

c⊤x

Ax = b
x ∈ Rn

+


min

x
c⊤x

TAx = Tb
x ∈ Rn

+

while preserving, approximately, w.a.h.p. the optimal value of the problem. Considering the
dual setting, this result allows to reduce the dimension of the dual problem where the dual
variables y ∈ Rm are “replaced" by T ⊤yT with yT ∈ Rk. This framework however, does not
allow to reduce both the number of constraints and the number of variables of an LP as in the
dual problem we now have inequality constraints instead of equality ones. Indeed, to randomly
aggregate a set of inequality constraints : Ax ≤ b, we need a random matrix S whose entries



Sij are non-negative.

In this paper, we propose the first method that allows to randomly aggregate a set of in-
equality constraints in an LP. More precisely, let us consider the pair :

P


min

x
c⊤x

Ax ≥ b
x ∈ Rn

(1) PS


min

x
c⊤x

SAx ≥ Sb
x ∈ Rn

(2)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rn and where S ∈ Rk×m is a random iid matrix such that
Sij = T 2

ij where Tij is drawn from the normal distribution N
(
0, 1

k

)
. Although this looks very

similar to the equality case it is actually quite different : indeed the random matrix S does not
satisfy the JLL property, hence a different analysis should be applied. Notice that since each
entry of S is non-negative, PS is a relaxation of P , hence v(PS) ≤ v(P) (where v(·) denotes
the optimal value of an optimization problem). The difficult part is to prove that there exists
a decreasing function δ(ε) > 0 (recall that k = O( log(n)

ε2 )) such that, w.h.a.p.,

v(P) − δ(ε) ≤ v(PS) ≤ v(P).

In this talk we will prove that, under an additional assumption, the results obtained in [4] can
be extended to the inequality case. We will also present some numerical results that support
the theory.
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