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1 Introduction
Periodic time series models have been extensively used in the recent decades to describe

many series with periodic dynamics. The inability of SARIMA models to adequately represent
many seasonal time series exhibiting a periodic autocovariance structure has motivated the
research in the periodically correlated processes. This notion, introduced by Gladyshev (1960),
was exploited in a variety of new classes of time series models, among them, the periodic
GARCH (Bollerslev and Ghysels (1996)), the periodic bilinear (Bibi and Gautier (2005)) and
the mixture periodic autoregressive model (Shao (2006)).
In this paper, we extend the class of periodic restricted exponential autoregressive model (PEX-
PAR(1)) discussed in Merzougui et al. (2016) to order p. PEXPAR series satisfy a nonlinear
difference equation similar to that for EXPAR models with parameters and white noise va-
riances which change periodically with season.
The class of exponential autoregressive (EXPAR) models introduced by Ozaki (1980) and Hag-
gan and Ozaki (1981) has shown their appropriateness in capturing certain well-known features
of nonlinear vibration theory, such as amplitude dependent frequency, jump phenomena and
limit cycle behavior, these models are autoregressive in form with amplitude dependent expo-
nential coefficients.
This paper deals with the least squares estimation of the periodic restricted EXPAR(p) model.

2 Main results

2.1 Periodic restricted EXPAR model
The proces {Yt; t ∈ Z} is said to follow a Periodic Restricted Exponential Autoregressive

PEXPARS(pt), with period S(S ≥ 2) , if it is a solution of a nonlinear periodic stochastic
difference equation of the form :

Yt =
pt∑
j=1

(ϕt,j + πt,jexp(−γY 2
t−1))Yt−j + εt, t ∈ Z (1)

Where {εt; t ∈ Z} is i.i.d. process with continuous density fσt(.), not necessarily Gaussian, with
mean 0 and finite variance σ2

t . The autoregressive parameters ϕt,j , πt,j ,∀t ∈ Z and j = 1, · · · , p,
the order pt and the innovation variance σ2

t are periodic, in time, with period S, i.e.,
ϕt+kS,j = ϕt,j , πt+kS,j = πt,j , pt+kS = pt, and σ2

t+kS = σ2
t ,∀k, t ∈ Z and j = 1, · · · , pt.



The nonlinear parameter,γ > 0, is known. A heuristic determination of γ from data is
γ̂ = − logε

maxY 2
t
, where 1 ≤ t ≤ n and ε is a small number (cf. Shi et al.(2001)).

Putting t = i+ Sτ, i = 1, 2, . . . , S and τ ∈ Z and taking p = maxpi, i ∈ { 1, 2, · · · , S}.
where ϕi,j = 0, πi,j = 0, for each j > pi, one can rewrite equation (1) in the equivalent form :

Yi+Sτ =
p∑
j=1

(ϕi,j + πi,jexp(−γY 2
i+Sτ−1))Yi+Sτ−j + εi+Sτ , i = 1, . . . , S, τ ∈ Z (2)

Let
ϕ
i

= (ϕi,1, πi,1, . . . , ϕi,p, πi,p)′, i = 1, . . . , S and ϕ = (ϕ′1, . . . , ϕ
′
S
)′ ∈ R2pS .

We make the following assumptions :

A1 : The periodic exponential autoregressive parameters ϕ satisfy the strict stationarity
periodically condition of (2). A sufficient condition is : All the roots of associated characteris-
tic equation

zp − ci,1zp−1 · · · − ci,p = 0

are inside the unit circle, where ci,j = max{|ϕi,j |, |ϕi,j + πi,j |}, j = 1, · · · , p; i = 1, · · · , S.

A2 : The periodically ergodic process {Yt; t ∈ Z} is such that E(Y 4
t ) <∞, for any t ∈ Z.

2.2 Parameter estimation
The estimation of the parameters ϕ of the model(2) is a linear optimisation problem, we can

solve it using the least squares procedure. Suppose that we have observations {Y1, · · · , YN}
from (2), N = mS, and define the conditional sum of squares

LN (ϕ) =
S∑
i=1

Li,m(ϕ)

LN (ϕ) =
S∑
i=1

(
m−1∑
τ=r+1

(YSτ+i − Eϕ(YSτ+i|βSτ+i−1))2)

LN (ϕ) =
S∑
i=1

(
m−1∑
τ=r+1

(YSτ+i −
p∑
j=1

(ϕi+j + πi+jexp(−γY 2
Sτ+i−1))YSτ+i−j)2).

where r =
[ p
S

]
, with [x] denotes the integer part of x, βSτ+i−1 is the σ-algebra generated by

the past of the process up to time Sτ+i−1 and Eϕ(.|.) is the conditional expectation assuming
that ϕ is the true parameter.

The estimate ϕ̂
i

= (ϕ̂i,1, π̂i,1, · · · , ϕ̂i,p, π̂i,p)′, for a fixed season i, is a solution to the estimating
equations

∂Li,m(ϕ)
∂ϕi,j

= 0 and ∂Li,m(ϕ)
∂πi,j

= 0, j = 1, . . . , p.

The solution for a fixed season i is

ϕ̂
i

=

Mi,1,1 · · · Mi,1,p
... . . . ...

Mi,p,1 · · · Mi,p,p


−1

×



m−1∑
τ=r+1

YSτ+i−1YSτ+i

m−1∑
τ=r+1

YSτ+i−1YSτ+iexp(−γY 2
Sτ+i−1)

...
m−1∑
τ=r+1

YSτ+i−pYSτ+i

m−1∑
τ=r+1

YSτ+i−pYSτ+iexp(−γY 2
Sτ+i−1)


, (3)



σ̂2
i = 1

m− r − 1

m−1∑
τ=r+1

(YSτ+i −
p∑
j=2

(ϕ̂i,j + π̂i,jexp(−γY 2
Sτ+i−1))YSτ+i−j)2, (4)

Where for j, k = 1, · · · , p,

Mi, j, k =


m−1∑
τ=r+1

YSτ+i−jYSτ+i−k
m−1∑
τ=r+1

YSτ+i−jYSτ+i−kexp(−γY 2
Sτ+i−1)

m−1∑
τ=r+1

YSτ+i−jYSτ+i−kexp(−γY 2
Sτ+i−1)

m−1∑
τ=r+1

YSτ+i−jYSτ+i−kexp(−2γY 2
Sτ+i−1)

 .

Remark 1. For p=1, we obtain the estimates of the periodic restricted EXPAR(1) model (cf.
Merzougui, 2017).

Theorem 1. Suppose that {Yt}, satisfying (2), is strictly stationary, then the least squares
estimators (3) and (4) are strongly consistent as m −→∞. That is

ϕ̂
i

a.s−→ ϕ
i
and σ̂2

i
a.s−→ σ2

i ,

and we have

√
m(ϕ̂

i
)− ϕ

i
) D−→
m −→∞

N(02p, σ
2
i Γ−1

i ),

where

Γi =

Γi,1,1 · · · Γi,1,p
... . . . ...

Γi,p,1 · · · Γi,p,p

 ,
and

Γi,j,k =
(

E(Yi−jYi−k) E(Yi−jYi−kexp(−γY 2
i−1))

E(Yi−jYi−kexp(−γY 2
i−1)) E(Yi−jYi−kexp(−2γY 2

i−1))

)
, j, k = 1, · · · , p.



2.3 Simulation results
The performance of the estimation is shown via small simulation. The restricted PEXPAR2(2)

model is used to generate time series for sizes n=200,400,800. We consider 1000 Monte Carlo
replications and report the LS estimations, their bias and their standard deviations. The table
1 gives the estimation with the parameters ϕ = (0.6,−1, 0.3,−0.5;−0.5, 1,−0.4, 0.8)′, γ = 1
and normal white noise σ2 = (0.6, 1)′. The choice of the values of the parameters was taken
such that the model fulfill the condition A1, see Figure 1. The box plots and the Q-Q plots of
the errors are given in Figure 2 and 3, respectively.
Table 1 show that the estimates are close to the true values and the standard deviation de-
creases when n becomes larger and we remark that the standard deviation of ϕi,j are smaller
than those of πi,j . This is confirmed by the box plots where we observe that the errors are
more consistent for ϕi,j and the range is larger for πi,j ,but in all cases the errors are centered
on 0. On the other hand, the Q-Q plots show that the errors are normal.

TAB. 1 – Estimation results for restricted PEXPAR2(2)





3 Conclusion
In this study, we have used the linear least squares method for the estimation of the periodic

restricted EXPAR(p) model, consistency and asymptotic normality are derived and simulated
series checked the asymptotic properties. This LS estimator can be used as an initial estimator
in adaptive estimation.
As a part of future research, the authors study the Nonlinear LS and Quasi ML estimation of
the periodic (unrestricted) EXPAR(p) model.
We have considered, here, a sufficient condition of strict stationarity but this subject merit
further research.
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