
Solving stochastic programming problems
with randomized scenario sampling

Gilles Bareilles1, Dmitry Grishchenko1, Franck Iutzeler1, Yassine Laguel1, Jérôme Malick2

1 Univ. Grenoble Alpes, Grenoble, France
{prenom.nom}@univ-grenoble-alpes.fr

2 CNRS, LJK, Grenoble, France
{prenom.nom}@univ-grenoble-alpes.fr

Mots-clés : Multistage Stochastic Programming, Progressive Hedging, Julia.

Multistage Stochastic Programming [3, Chap. 9] consists in minimizing the expected cost
of some decision over a set of coupled scenarios. Progressive Hedging is a popular strategy for
solving such problems, based on scenario decomposition. In this talk, we present a randomized
version of this algorithm able to compute an update as soon as a scenario subproblem is solved.
This is of crucial importance when run on parallel computing architectures. We prove that the
randomized version has the same converge properties as the standard one and we release an
easy-to-use Julia toolbox.

1 Large-scale (but structured) multistage problems
We briefly recall the general multistage stochastic problems and the existing scenario-based

decomposition algorithm. We follow closely the notation of the textbook [3, Chap. 9].
For each scenario s ∈ {1, .., S}, we associate a random variable ξs encompassing its stochastic

nature and its probability ps. We denote by f s(xs) = f(xs, ξs) the cost of the decision sequence
xs ∈ Rn taken for scenario s when it occurs. Both variables are split in bits xst , t ∈ {1, . . . , T},
which model the sequential aspect of the problem at hand. A simple formulation of a Multistage
Stochastic Program is

min
x∈W

f(x) =
S∑
s=1

psf
s(xs).

where the difficulty lies in the coupling of the scenarios by non-anticipativity constraints :

W =

x ∈ RS×n : ∀s1, s2 ∈ {1, ..., S}

∣∣∣∣∣∣∣
xs1

1 = xs2
1

and
∀t ∈ {2, ..., T} xs1

t = xs2
t if ξs1

[1,t−1] = ξs2
[1,t−1]

 (1)

This indeed leads to a block-coupling of total decision variable x ∈ RS×n of the form :

Stages1 2 3 4

ξ1 ξ2 ξ3
Scenario 8
Scenario 7
Scenario 6
Scenario 5
Scenario 4
Scenario 3
Scenario 2
Scenario 1

x8
1

x7
1

x6
1

x5
1

x4
1

x3
1

x2
1

x1
1

x8
2

x7
2

x6
2

x5
2

x4
2

x3
2

x2
2

x1
2

x8
3

x7
3

x6
3

x5
3

x4
3

x3
3

x2
3

x1
3

x8
4

x7
4

x6
4

x5
4

x4
4

x3
4

x2
4

x1
4



The Progressive hedging algorithm solves this problem by solving each scenario independently
and then projecting the obtained solution on the non-anticipativity constraints :

yk+1,s = argminy∈Rn
{
f s(y) + 1

2µ
∥∥y − xk,s +µ uk,s

∥∥2} for all s = 1, .., S
xk+1,s
t = 1∑

σ∈Bs
t
pσ

∑
σ∈Bst pσ yk+1,σ

t for all s = 1, .., S and t = 1, .., T

uk+1 = uk + 1
µ(yk+1− xk+1)

where we use the notion of bundle Bst of the scenarios that are indistinguishable from scenario
s at time t (see Eq. (1)).

2 Decomposition by randomized sampling
Instead of involving all the scenarios at each iteration, our randomized version of progressive

hedging samples one scenario at each iteration :

Draw a scenario sk ∈ {1, .., S} with probability P[sk = s] = 1/S

xk+1,sk
t = 1∑

σ∈Bsk
t

pσ

∑
σ∈Bskt

pσ zk,σt for all t = 1, .., T projection only on
constraints involving sk

yk+1,sk = argminy∈Rn
{
f s

k(y) + 1
2µ

∥∥∥y − 2 xk+1,sk + zk,sk
∥∥∥2
}

optimization sub-problem
only concerning scenario sk

zk+1,sk = zk,sk + yk+1,sk − xk+1,sk and zk+1,s = zk,s for all s 6= sk

Return : x̃k+1 = 1∑
σ∈Bst pσ

∑
σ∈Bst

pσ yk+1,σ
t for all s = 1, .., S and t = 1, .., T

Our approach is based on the randomized operator theory (see e.g. [1]). Mathematically, we
show, in the convex case, that the sequence (xk) generated by this method is feasible (xk ∈ W
a.s. for all k) and converges almost surely to a solution of the problem.

0 20 40 60
10−4

10−3

10−2

10−1

100

101

102

103

time (s)

f
(x
k
)−

f
(x
?
)

prog. hedging
randomized prog. hedging

In practice, randomly sampling one scena-
rio per iteration enables us to dramatically
reduce the cost of an iteration (both for the
scenario solving part and the projection part)
which results in better performances.

We implemented our method in an easy-
to-use Julia toolbox (expected release : Dec.
2020) along with several examples. We plot
the performance of our method compared on
a simple hydro-thermal scheduling problem
following from [2] and the FAST toolbox 1.

Références
[1] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asynchronous distributed optimization using a randomized

alternating direction method of multipliers. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pages 3671–3676.
IEEE, 2013.

[2] Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization applied to energy planning. Mathematical program-
ming, 52(1-3) :359–375, 1991.

[3] Andrzej Ruszczyński. Decomposition methods. In Stochastic Programming, volume 10 of Handbooks in Operations Research and Mana-
gement Science, pages 141 – 211. Elsevier, 2003.

1. https://stanford.edu/ lcambier/cgi-bin/fast/index.php


