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Abstract : Over a weekly planning horizon, we consider the daily cross-docking operations at inter-
modal logistics platforms. Each day, products are received by truck from inland suppliers. The same
day or later in the week, the products have then to be loaded into containers which are then shipped
by boat to offshore production plants at the end of the week. The full content of a container must be
available at the cross-docking platform to enable its loading operations to start. The objective is to
smooth the workload over the week. Results have been obtained for real instances provided by a large
European car manufacturer.
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1 Introduction

In this study, we model and solve a problem encountered by a European Car Manufacturer
(this manufacturer cannot be named for confidentiality reasons and will be designated here by
ECM). ECM consolidates the product flows of its European suppliers to its offshore plants (in
America, Africa, or Asia) by routing these products through cross-docking platforms (CDPs).
Over one week (from Monday to Friday), products are delivered by trucks to the CDPs. These
products are then sorted and reconditioned (to satisfy the constraints of sea transport, in
particular) and loaded into containers which are finally shipped by boat to the production
plants.

ECM seeks to smooth the workload over the week. The workload of a day is proportional to
the volume of products handled (i.e., the sum of the volumes of products unloaded from trucks
and loaded into containers). To do this, ECM has to determine the content of the trucks, the
content of the containers, and the loading day of the containers. We denote this problem as
the ECM problem.

For each CDP, ECM solves several complex optimization problems. First of all, ECM defines
in advance the truck routes to collect the products from the suppliers (e.g., [1]). Truck routes
cannot be modified (i.e., the truck arrival day and the list of visited suppliers), but ECM can
nevertheless choose the products that are collected from each supplier in each route (as long
as the truck loading constraints are satisfied). Next, ECM minimizes the number of containers
needed to ship all the products (this problem was proposed for the ROADEF 2015 ESICUP
competition). Finally, during the loading phase, ECM must wait until all the products com-
posing a container are present in the CDP before starting to load the container (the number



of loading doors being limited). From an operational point of view, the loading day of each
container and the number of containers loaded per day are not constrained.

Currently, ECM independently solves the optimization problems related to the content of
trucks and containers. Once these problems have been solved, ECM decides on the loading day
of each container. As the entire content of the containers must be available in the CDP at the
time of loading, it appears that ECM must wait until the end of the week to carry out most
of the loading operations. This creates unbalanced workloads within the CDPs over the week
(the workload is 2-3 times larger in the last days of the week than in the first days).

In this work, we propose to jointly optimize the content of trucks and containers to smooth the
workload over the week. Changing the content of trucks and containers involves taking into
account complex loading constraints (size, weight and position of the transported products).
A detailed description of these constraints can be found in [3]. The full consideration of loa-
ding constraints would lead to an untractable optimization problem. However, these loading
problems can be simplified as the products are loaded into boxes, and the loading constraints
only apply to the boxes regardless of the products they contain. In the data provided by ECM,
more than 70% of the boxes can transport different products with weight variations of less
than 10kg. Thus, for a given loading of boxes into containers (resp. trucks), we can evaluate a
large number of box-to-product assignments without violating the loading constraints.

The contributions of this work are the following. We model the ECM problem with a mixed-
integer linear program (MILP) and we propose a matheuristic (called fix-and-optimize) to
solve the ECM instances (that involves large MILPs). This matheuristic consists in iteratively
solving sub-problems generated by fixing the value of certain variables in the MILP. From a
managerial point of view, we quantify the gain brought by the joint optimization of truck and
container contents in the CDPs by comparing our results with current industrial practice on
real instances provided by ECM.

2 Model

In a preliminary work [2], we considered a simplified version of the ECM problem detailed
above, where we did not consider the truck contents. The reader is referred to that work for a
description of the associated literature review and for the justification of the NP-hardness of
the problem considered here.

2.1 Sets, parameters, and variables

For the needs of the matheuristic, we detail here a MILP in which the contents of some of
the trucks and some of the containers are fixed. The exponents (in) (resp. (out)) refer to the
parameters related to trucks (resp. containers).

T is the time horizon (i.e., days). The following sets are considered. C is the set of CDP clients
(i.e., production plants), P is the set of product types, B is the set of box types, S is the set of
suppliers, I is the set of trucks (It is the set of trucks arriving on day t ∈ T ), and O is the set
of containers (Oc is the set of containers that are sent to the client c ∈ C). The sets for which
the variables are fixed (resp. not fixed) have as exponent (f) (resp. (nf)). Therefore, I(nf) refers
to all trucks for which the content can be modified.



The following parameters are given.

gp ∈ N : number of units of product type p ∈ P already available in the inventory
at the beginning of the week

Mop : largest amount of product of type p ∈ P that can be transported in container o ∈ O
dcp ∈ N : demand of client c ∈ C for product type p ∈ P (in units)
lpb ∈ R+ : weight of a box of type b ∈ B when filled with product type p ∈ P (in kg)
qpb ∈ N : number of units of product type p ∈ P that can be transported in box type b ∈ B

n
(in)
ib ∈ N : maximum number of units of boxes of type b ∈ B transported in truck i ∈ I

n
(out)
ob ∈ N : maximum number of units of boxes of type b ∈ B transported in container o ∈ O

q
(in)
ip ∈ N : number of products of type p ∈ P delivered by truck i ∈ I(f)

q(out)
op ∈ N : number of products of type p ∈ P sent by container o ∈ O(f)

l(in) ∈ R+ : maximum allowed weight that can be transported by a truck (in kg)
l(out) ∈ R+ : maximum allowed weight that can be transported by a container (in kg)
hp ∈ R+ : volume of a product of type p ∈ P (in m3)

πpi = 1 if truck i ∈ I visits the supplier that can provide product type p ∈ P
(πpi = 0 otherwise)

The following variables have to be determined.

upt ∈ N : number of units of product type p ∈ P in stock on day t ∈ T before loading the containers
vpt ∈ N : number of units of product type p ∈ P in stock on day t ∈ T after loading the containers
rpt ∈ N : number of units of product type p ∈ P received on day t ∈ T
spt ∈ N : number of units of product type p ∈ P sent on day t ∈ T
zibp ∈ N : number of boxes of type b ∈ B assigned to product type p ∈ P in truck i ∈ I(nf)

xobp ∈ N : number of boxes of type b ∈ B assigned to product type p ∈ P in container o ∈ O(nf)

wopt ∈ N : number of units of product type p ∈ P sent by container o ∈ O(nf) on day t ∈ T
mt ∈ R : workload performed on day t ∈ T (in m3)
f ∈ R : workload difference between the most loaded day and the least loaded one

yot = 1 if container o ∈ O is loaded on day t ∈ T (yot = 0 otherwise)

2.2 MILP

We denote by Q(I(nf), O(nf)) the MILP associated with the ECM problem. Only the contents of
the I(nf) trucks and the O(nf) containers can be modified in this MILP. The MILP is described
as follows :

Minimize f (1)

Subject to



f ≥ mt1 −mt2 t1, t2 ∈ T (2)

mt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
p∈P

hp · wopt t ∈ T (3)

vpt = upt − spt p ∈ P , t ∈ T (4)

upt = vp,t−1 + rpt p ∈ P , t ∈ T (5)

vp0 = gp p ∈ P (6)

rpt =
∑
b∈B

∑
(i∈I(nf)

t |πpi>0)

qpb · zibp +
∑
i∈I(f)

t

q
(in)
ip p ∈ P , t ∈ T (7)

spt =
∑

o∈O(nf)

wopt +
∑

o∈O(f)

q(out)
op · yot p ∈ P , t ∈ T (8)

∑
t∈T

yot = 1 o ∈ O (9)

wopt ≤Mop · yot t ∈ T , o ∈ O, p ∈ P (10)

wopt ≤
∑
b∈B

qpb · xobp t ∈ T , o ∈ O, p ∈ P (11)

∑
o∈O(nf)

c

∑
t∈T

wopt = dcp −
∑

o∈O(f)
c

q(out)
op c ∈ C, p ∈ P (12)

∑
b∈B

∑
p∈P

lpb · xobp ≤ l(out) o ∈ O(nf) (13)

∑
p∈P

xobp ≤ n
(out)
ob o ∈ O(nf), b ∈ B (14)

∑
b∈B

∑
p∈P

lpb · zibp ≤ l(in) i ∈ I(nf). (15)

∑
p∈P |πpi>0

zibp ≤ n
(in)
ib i ∈ I(nf), b ∈ B (16)

Constraints (2) sets the difference between the most loaded working day and least one. Constraints
(3) calculate for each day the value of the workload. Constraints (4) (resp. (5)) compute the
available inventory in the CDP at the end (resp. at the beginning) of the day. Constraints
(6) fix the initial inventory in the CDP at the beginning of the planning horizon (i.e., the
products not obtained in the planning horizon already belong to the inventory from the first
day of the week). For each day, constraints (7) determine the amount of products obtained at
the CDP, whereas constraints (8) compute the number of units sent for each product type.
Constraints (9) ensure that no container is loaded more than once. Constraints (10) restrict
each product to be sent on the loading day of a container. For each containes, constraints
(11) bound the amount of products sent. Constraints (12) satisfy the demand of each client.
The loading constraints of the containers (resp. trucks) are in constraints (13) and (14) (resp.
(15) and (16)). More precisely, constraints (13) (resp. (15)) limit the weight of the transported
products to the container (resp. the truck) capacity, and constraints (14) (resp. (16)) ensure
that the number of boxes transported in a container (resp. in a truck) satisfy the allowed upper
bound.



2.3 Specific configurations

We consider the configurations presented below.

(Q) : the truck and container contents are optimized
(i.e., O(nf) = O and I(nf) = I)

(Qz) : the container contents are optimized
(i.e., the zibp variables are fixed : O(nf) = O and I(nf) = ∅)

(Qx) : the truck contents are optimized
(i.e., the xobp variables are fixed : O(nf) = ∅ and I(nf) = I)

(Qx,z) : the loading day of the containers is optimized
(i.e., O(nf) = ∅ and I(nf) = ∅)

(Qx,z) captures the current practice at ECM, where the decision maker builds "by hand" the
loading day of each container (in a step-by-step fashion). In such a context, the truck and
container contents are built at an earlier stage with two different optimization systems.

3 Fix-and-optimize matheuristic

As CPLEX is unable to find any feasible solution for the larger instances provided by ECM, we
introduce a fix-and-optimize matheuristic (FOM) in Algorithm 1. This algorithm optimizes the
truck content, the container content, and the container loading day, by iteratively optimizing a
subset of trucks and containers. It takes as an input an initial feasible solution (i.e., satisfying
constraints (2) – (16)). For example, we can initialize FOM with the solution currently used
by ECM. At each iteration of the algorithm, a subset I(nf) of truck and O(nf) of containers are
selected. The resulting Q(I(nf), O(nf)) problem is then solved with CPLEX. We set CPLEX
to stop when it finds a solution at σ% of the lower bound or after tMILP minutes of execution
time. The new solution is then updated. As CPLEX is launched with an initial feasible solu-
tion (the one obtained at the previous iteration), Q(I(nf), O(nf)) never returns a deteriorating
solution. FOM stops if the execution time is greater than tmax or after ηmax iterations without
improvements. Preliminary experiments show that efficient FOM parameters can be defined
as follows : ρ = 10%, σ = 2%, tMILP = 5 minutes, ηmax = 50, tmax = 10 hours. Despite ECM
allows a runtime of 10 hours (i.e., FOM can be run overnight), our solutions have been usually
obtained within one hour.

Algorithm 1 Fix-and-optimize matheuristic

Input : s0 : initial solution, ρ, (σ, tMILP ), (ηmax, tmax)

Set : l = 1.

While no stopping is met do :
1. Choose randomly the trucks I(nf) and the containers O(nf) to optimize (i.e., set |I(nf)| = ρ · |I|

and O(nf) = ρ · |O|).
2. Solve Q(O(nf), I(nf)). CPLEX stops when the gap between the best known solution and the

lower bound is lower than σ% or after an execution time greater than tMILP . Let sl denote
the resulting solution.

3. Stop FOM if the solution has not been changed for ηmax iterations or if the execution time is
larger than tmax. Otherwise set l = l + 1.

Return : sl



4 Results

We use C++ for the algorithms and CPLEX 12.4 to solve the MILPs. The employed computer
has the following configuration : 2.2 GHz Intel Core i7 with 16 Go 1600 MHz DDR3 of RAM
memory.

4.1 Instances

ECM provided us with data of three different CDPs : V, G, and M. Several thousand of
different product types transit through the CDPs (up to 8,649 product types). On average,
the smallest instances involve a few dozen trucks and containers whereas the largest instances
involve several hundred trucks and containers (up to 1,104 trucks and 829 containers). Our
experiments have shown that for the smaller instances (i.e., instances V and G), CPLEX can
solve the (Q) formulation within an hour. In contrast, for the M instances, CPLEX fails to
solve the (Qz) and (Q) formulations after 10 hours of execution time.

4.2 Performance of FOM

For the formulation (Qz), Table 1 compares the results of CPLEX and FOM for the M instances
(which cannot be solved with CPLEX). The execution time at disposal is 1 hour. We do not
allocate the entire execution time at disposal as we solve (Qz), which is a simplified formulation
of the ECM problem in which the content of the trucks is not optimized. We compare the results
of FOM with those of CPLEX for different sizes of O(nf). We display the percentage gain, which
is computed as follows :

f
Q(I(nf),O(nf))

fQx,z
, where fQ(I(nf),O(nf)) is the solution of Q(I(nf), O(nf)) and

fQx,z denotes the workload gap observed with the current ECM solution. It highlights how ECM
current solutions can be improved by considering different subsets O(nf) in Q(I(nf), O(nf)) (we
recall that, here, I(nf) = ∅). For column FOM, we display fF OM

fQx,z
, where fFOM is the solution

returned by FOM. Hence, For instance M1, Table 1 indicates that the workload gap returned by
FOM is 60% of the workload gap of the ECM current solution. We can first observe that CPLEX
is more efficient when some variable are fixed. Indeed, the solution returned by CPLEX for
(Qz) is never better than the solution of Q(∅, O(nf)) where |O(nf)| < |O|. Second, with one hour
of execution time, FOM outperforms CPLEX, whatever the size of O(nf) used in Q(∅, O(nf)).
Solving iteratively small MILPs leads to better solutions than directly solving one large MILP.
Using CPLEX, the best solutions are achieved when solving Q(∅, O(nf) = 20% · |O|). In that
case, the workload gap found is 83.9% of the workload gap observed in ECM current solutions.
Considering FOM allows to find a workload gap of 67.1% of the one observed in the ECM
current solutions (average over the seven M instances).

4.3 Gain achieved by joint optimization of truck and container contents

In Table 2, the following solutions are compared : (1) the Q solutions (i.e., the truck and
contained contents are optimized) ; (2) the Qx solutions (i.e., the container contents are fixed) ;
(3) the Qz solutions (i.e., the truck contents are fixed) ; (4) the Qx,z solutions (i.e., the truck and
contained contents are fixed). The optimal solution value is given in column "Obj.", whereas
column "Time" indicates the time needed for CPLEX to find optimality (in minutes). Columns
"% (ECM)", "% Qz" and "%(Qx)" give the improvement percentage with respect to ECM,
Qz and Qx, respectively. For instance, the improvement of configuration Q over Qz is given
in column "% Qz" and is computed as f(Q)−f(Qz)

f(Qz) , where f(Qz) (resp. f(Q)) is the obtained
workload gap when considering configuration Qz (resp. Q).



TAB. 1 – CPLEX versus FOM results (I(nf) = ∅)

Inst. |O(nf)| = 10% · |O| |O(nf)| = 20% · |O| |O(nf)| = 30% · |O| |O(nf)| = 100% · |O| FOM

Obj. LB Obj. LB Obj. LB Obj. LB Obj.

M1 96.1% 96.1% 86.1% 83.1% 99.9% 61.1% 100.0% 41.2% 60.0%

M2 99.7% 99.7% 93.8% 93.8% 85.3% 81.1% 100.0% 63.6% 81.9%

M3 90.5% 90.5% 80.6% 79.9% 74.0% 73.2% 100.0% 60.0% 69.3%

M4 83.5% 83.5% 71.5% 66.6% 84.7% 60.8% 99.8% 46.0% 67.9%

M5 86.7% 86.7% 78.4% 78.4% 74.4% 74.4% 100.0% 57.6% 70.1%

M6 87.2% 87.2% 77.2% 77.2% 99.9% 53.7% 99.7% 38.2% 60.8%

M7 89.6% 89.6% 100.0% 72.4% 100.0% 46.5% 100.0% 33.6% 59.9%

Avg. 90.5% 90.5% 83.9% 78.8% 88.3% 64.4% 99.9% 48.6% 67.1%

As already highlighted in [2], reworking the container contents leads to significant improvements
with respect to the current practice (on average, an improvement of 6.2% for the V instances,
and of 30% for the G instances). Similar improvements are obtained here when reworking
the truck contents (on average, an improvement of 13% for the V instances and of 19% for
the G instances). The main achievement is obtained when reworking the truck and container
contents in an integrated manner (together with the loading day of the containers). Indeed,
when compared to [2], the additional average improvement obtained by solving Q instead of
Qz increases to 11.8% (resp. 30%) for the V (resp. G) instances. When compared to the current
practice at ECM, the average improvement is of 19% for the V instances, and 70% for the G
instances. Similar performances are obtained by FOM for the M instances.

TAB. 2 – Results of the different formulations for the V and G instances.

Inst. (Qx,z) (Qz) (Qx) (Q)

Obj. Time Obj. Time %(ECM) Obj. Time %(ECM) Obj. Time %(ECM) %(Qz) %(Qx)

V1 1,037 < 1 1,037 < 1 0.0% 780 < 1 -24.8% 778 < 1 -25.0% -25.0% -0.3%

V2 1,863 < 1 1,757 < 1 -5.7% 1,728 < 1 -7.2% 1,626 2 -12.7% -7.5% -5.9%

V3 1,946 < 1 1,841 < 1 -5.4% 1,781 < 1 -8.5% 1,778 < 1 -8.6% -3.4% -0.2%

V4 2,528 < 1 2,304 < 1 -8.9% 2,237 < 1 -11.5% 2,024 < 1 -19.9% -12.2% -9.5%

G1 3,964 < 1 3,317 < 1 -16.3% 3,701 < 1 -6.6% 2,774 < 1 -30.0% -16.4% -25.0%

G2 2,492 < 1 1,593 8 -36.1% 1,818 < 1 -27.0% 881 50 -64.6% -44.7% -51.5%

G3 5,014 < 1 3,977 < 1 -20.7% 4,661 < 1 -7.0% 3,700 < 1 -26.2% -7.0% -20.6%

G4 3,565 < 1 2,633 5 -26.1% 3,173 < 1 -11.0% 2,352 10 -34.0% -10.7% -25.9%

G5 4,859 < 1 3,703 31 -23.8% 3,328 < 1 -31.5% 2,022 > 60 -58.4% -45.4% -39.2%

5 Conclusions

Considering various operations in cross-docking platforms, we have proposed models and solu-
tion techniques for a real problem using real data. The workload has to be smoothed over the
planning horizon (a week), which is obtained through the minimization of the gap between the
most loaded working day and the least loaded one. We compare our results with current prac-
tice at ECM, that acts as a non-integrated solution method where truck and container contents



are optimized independently. Computational experiments showed that allowing product reas-
signment from one container to another and from a truck to another leads to improvements
up to 70%.

From a methodological point of view, we have developed a fix-and-optimize matheuristic
(FOM). For large MILPs, FOM is able to find competitive solutions while CPLEX can ba-
rely improve the initial one within the same amount of time. In an industrial context, we think
that FOM should be more widely used. Indeed, FOM allows managers to find good solutions
for complex MILPs. Compared to other matheuristics or metaheuristics, FOM does not re-
quire cumbersome developments and is easy to maintain. For instance, changes in the problem
formulation can easily be taken into account by just modifying the associated MILP, while it
could involve costly computational effort when considering metaheuristics. For these reasons,
we expect that FOM could have a great future in other industrial contexts.
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