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This document aims at providing an overview of the internship I completed within the
Transport and Mobility laboratory (TRANSP-OR) at École Polytechnique Fédérale de Lau-
sanne (EPFL). This internship constitutes the final semester of the master’s degree in Micro-
electronics and Computer Science (ISMIN program) of the French engineering high school École
Nationale Supérieure des Mines de Saint-Étienne (ENSM-SE). Its goal is to investigate and
compare several solving techniques for a demand-based revenue maximization model.

1 Problem Overview

1.1 Demand-based Revenue Maximization Problem

Consider an operator that aims at finding the best pricing strategy to maximize its revenue.
We assume that this operator sells services i ∈ C (except an opt-out option i = 0) to a
population of N customers, at a certain price pi,n ∈ [ai; bi]. These prices need to be decided
as they affect the choices of customers (and thereby the revenue). The corresponding MILP
formulation, denoted (P ), has been introduced in Pacheco2019.

In discrete choice modeling, each individual n associates a score to alternative i through
a utility Ui,n, which is a function of the price pi,n along with an error term. For the sake of
integration into MILP, this function is required be linear function in the decision variables pi,n,
and its probabilistic part is addressed by generating R scenarios. At the end, each customer
opts for the alternative maximizing its utility function.

1.2 Lagrangian decomposition of the Model

The model turns out to be computationally expensive for instances having large sizes. The
idea is to apply Lagrangian decomposition to the problem in order to obtain N ·R subproblems
that can be solved more easily with respect to (P ). For that purpose, each price pi,n is split
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into R variables pi,n,r while imposing equality between them. These equality constraints are
then relaxed and their violation are penalized with multipliers in the objective function.

Each Lagrangian subproblems are solved to optimality, and a feasible solution is constructed
to (P ) using pi,n,r. This Lagrangian-based heuristic provides a lower and upper bound to (P ).

2 Outline of the Presented Work

2.1 Subgradient Optimization Method

In order to update the Lagrangian multipliers, the Subgradient Optimization Method is
considered. This method is also compared to three of its variants summarized in Guta2003:
the Deflected, Conditional and Hybrid Subgradients. They are designed to speed up the con-
vergence by correcting the subgradient direction.

As outcome, no significant differences are noticed between the approaches, even with a
sensitivity analysis and a study of two step strategies. For the best configuration, the upper
and lower bounds remain quite poor, with a gap to the optimal over 26% and 7%, respectively.
Besides, the CPLEX solver clearly proves to be more efficient than the subgradient approach.

2.2 Improvement Strategies

Various enhancements approaches are tested: object oriented approach, preprocessing strate-
gies, subgradient adjustments... The most beneficial one is the grouping of the Lagragian
subproblem, that allows to overcome the too strong decomposition initialy performed. The
resulting formulation leads to a gap to the optimal below 1% for the lower bound and 6% for
the upper one within a reasonable computational time.

2.3 Direct Heuristics

Nevertheless, a quite simple heuristic method for (P ) proves to outperform the two decom-
position techniques. Based on an proven optimality criterion, a taylor-made algorithm provides
an average gap of 1.88% with a solving time exponentially decreasing compared to CPLEX one.
A less competitive heuristic is also designed to solve (P ) to its optimal for |C| < 4.

3 Future research directions

Several avenues are worth considering. A comparison of the heuristics has to be conducted
with state-of-the-art (meta)heuristics, just like the subgradient method. If industrial appli-
cations are considered, all the decompositions can be parallelized in order to improve solving
efficiency. From a research perspective, the assessment of theses methods to the extension of
(P ) to the capacitated case with one only price pi already shows promising results.
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